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Chapter I

BASIC CONCEPTS

1-1 INTRODUCTION

The coupling of electromagnetic fields between isolated regions

through one or more apertures is a widely encountered problem in elec-

tromagnetics. Some examples are cavity-to-cavity coupling, waveguide-

to-waveguide coupling, waveguide-to-exterior space coupling, and so on.

The general problem consists of two or more regions of space coupled by

one or more apertures. There can be sources in one or more regions,

and material bodies in one or more regions. Figure 1-1 shows a typical

problem of two regions coupled by an aperture. For this example, it

is assumed that sources exist in region a, and a material body exists

in region b. The boundary of the regions is considered to be a perfect

conductors

region b

m trial
body

aperture

Fig. 1-1. A typical aperture coupling problem.
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electric conductor, but other types of impermeable boundaries may be

used. Each region may be closed, as region a is shown in Fig. 1-1, or

may be open (extend to infinity), as region b is shown.

The present chapter is intended to serve as a short summary of

the principal relationships and notation that we use throughout the

report. For some readers this should be only a quick review. Others,

less familiar with electromagnetic theory, should refer to some of the

well-known textbooks [11 to [7]. (Bracketed numbers denote references

which are listed at the end of each chapter.)

1-2 FIELDS AND SOURCES

For our purposes, the electromagnetic field is expressed in terms

of two vectors:

E - the electric field

H - the magnetic field

The source of the field may be of two types

J - the electric current

M - the magnetic current

We use these symbols for both volume densities and for surface densities.

It should be clear from the text or equations which density is meant.

The medium J: which the field exists is characterized by three consti-

tutive parameters.

C - the permittivity or capacitivity

- the permeability or inductivity

a - the conductivity



3N

c and u may be complex to allow for energy dissipation, in which case 0

need not be shown explicitly.

In any region of space for which E and H are differentiable, the

field satisfies the Maxwell curl equations

V X H = jwE E + J

(1-1)

-V x E = jwp H + M

where V x is the curl operator and w is the angular frequency. The diver-

gence of (1-1) yields the Maxwell divergence equations

V . £E= q

(1-2)

V * iH- m

where V. is the divergence operator and the two scalars are

q - the electric charge density

m - the magnetic charge density

These are related to the electric and magnetic currents by the equations

of continuity

V * - jwq

(1-3)

Here the symbols q and m denote volume densities, but we use the same

symbols for surface densities. It should be clear from the text and

equations which density is meant.

In any region that is source-free (J - M = 0) , linear, and

homogeneous (c and ji independent of position),the curl of equations

(1-1) leads to the vector Helmholtz equations
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-V X V X E + k2E = 0

2 (1-4)

-V x V X H + k 2H = 0

where k w/lep is the wavenumber. The rectangular components of E and H

satisfy the scalar Helmholtz equation

V2E i + k2E. 01

(1-5)
V2Hi + k2 Hi  0

where i = x, y, orz. In addition to (1-5), the vectors must satisfy

V - E = 0 and V • H = 0.

1-3 POTENTIALS

It is often convenient to express the electromagnetic fields in

terms of auxiliary functions, called potentials. In a homogeneous

region we have the representation

(1-6)

H =1 x A

where the potentials are

A - the magnetic vector potential

- the electric scalar potential

The potentials A and 0 satisfy the Lorentz gauge

V " A = - JPEO (1-7)

which is analogous to the equation of continuity (1-3). Potentials with

other gauges are sometimes useful, but we do not consider them in this

report.

undo
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Alternatively, the field in a homogeneous region can be represented

as

E =- V x F

(1-8)

H _ - F - jp

where the potentials are

F - the electric vector potential

- the magnetic scalar potential

The potentials F and 4 also satisfy the Lorentz gauge

V F - jw jir (1-9)

The potentials F and P are said to be dual tothe potentials A and .

In general, the field in a homogeneous region can he represented

as a superposition of (1-6) and (1-8), or

E = - - V x F - jwA - _Y
E - -(1-10)

= x A - jwF - Vj,

In a source-free homogeneous region, the rectangular components of A and F

and the scalars 0 and i satisfy the Helmholtz equation

V T + k2I = 0 (1-11)

When one solution of (1-11) is taken for a rectangular component of A,

and another solution of (1-11) is taken for a rectangular component of F,

the potentials are sometimes called Hertzian potentials.

One advantage of using potentials is that the conditions E = 0

and V • H 0 are automatically satisfied. Another advantage is that the

potentials can be simply related to the sources, as we show in the next

section.
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1-4 POTENTIAL INTEGRALS

Given an electric current J and its associated electric change q

in an infinite homogeneous medium characterized by 1 and c, the potential

integrals are

A(r) p M~ J(r') G(r,r')dT'

(1-12)

(r) = JJJ q(') G(r,r')dT'
where the free space Green's function G is

G(r,r') = ekr-r'(1-13)

In (1-12) and (1-13), r is the radius vector to the field point and r'

is the radius vector to the source point. The sources J and q are con-

sidered to be volume densities in (1-12), as evidenced by the triple

integral sign with dT' representing a volume element of integration.

If the current and charge are surface densities, it is merely necessary

to change to a surface integration, and similarly for line densities.

The electromagnetic field associated with A and c is given by (1-6).

The charge q is related to the current J by the equation of continuity (1-3).

For the dual case of a magnetic current M and its associated mag-

netic charge m in an infinite homogeneous medium characterized by c and w,

the potential integrals are

F(r) = M M(r') G(r,r')dT'

(1-14)

_ (r) JJJ m(r') G(r,r')dT'
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where the Green's function G is again given by (1-13). The electromagnetic

field associated with F and is given by (1-8). The charge m is related

to the current M by the equation of continuity (1-3).

If the problem of interest is two-dimensional, that is, if the

sources are infinite in extent in one rectangular direction and independent

of that direction, the Green's function must be changed to

G(r, r') =- H (2)(k[E - r'j) (1-15)

Here H(2) is the zero order Hankel function of the second kind, equal to

1 - iN0 ' where J is the zero order Bessel function of the first kind and

N is the zero order Bessel function of the second kind (or Neumann func-

tion). The potential integrals (1-12) and (1-14) must now be surface

integrals in the cross sectional surface transverse to the direction of

invariance of the current.

1-5 CONDITIONS AT SURFACES

There may be discontinuities in the electromagnetic field at sheets

of current and at surface discontinuities of the constitutive parameters.

In Fig. 1-2, let S represent a surface between two regions, a and b, and

let n be the unit vector normal to S pointing into region a. There may

be an electric surface current J and/or a magnetic surface current M on S.

(In figures, we use a single headed arrow to denote electric current and

a double headed arrow to denote magnetic current.) The tangential com-

ponents of the field on S then obey the conditions

J *n x (Ha ~b
on S (1-16)

M (Ea - E



reion a

region b

Fig. 1-2. A boundary surface S between regions a and b, possibly

supporting surface currents J and M.

where superscript a on a vector denotes that it is evaluated in or is

peculiar to region a, and similarly for the superscript b. The field

vectors in (1-16) are evaluated on the surface S, as implied by "on S"

in (1-16), with the superscript denoting on which side of S.

The normal components of the fields on S obey the conditions

q =n -(aE a Cb E b

on S (1-17)

m = n - ( aH _ bH)

where q and m are the surface densities of electric and magnetic charges on

a a b b
S, t c, are c, i in region a, and c , VJ are E, p in region b. The q

and m are related to J and M by the equation of continuity (1-3), except

that now V represents the surface divergence operator.

If there is no surface current on S, then the left-hand sides of

(1-16) are zero and

n × (H-H) = 0

on S (1-18)

n X(E a Eb) 0 n
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These equations state that the tangential components of E and H must

be continuous across S. There are no surface densities of induced cur-

rent at a boundary between two media (perfect conductors excepted).

Hence, the tangential components of E and H must be continuous across

the boundary between two media (perfect conductors excepted).

Similarly, if there is no surface charge on S, the left-hand

sides of (1-17) are zeto and

_ aa • bb }

n c E n cE

on S (1-19)

n j aH a n pbH b

These equations state that the normal components of CE and pH must be

continuous across S. In the time-harmonic case, there are no surface

densities of induced charge at a boundary between two media (perfect

conductors excepted). Hence, the normal components of cE and uH must

be continuous across the boundary between two media (perfect conductors

excepted).

In the special case of a perfect electric conductor, no field

exists internal to the perfect conductor, and a surface current J exists

on the surface. If region b is a perfect conductor, boundary conditons

(1-16) become

J= n a ' n 

on S (1-20)

0 n x E aJ

Hence, the tangential component of E is zero at the surface of a perfect

electric conductor, and the tangential component of H is equal to J ro-

tated 900. Also, (1-17) becomes the boundary conditions
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q n a Eaq=n *L

on S (1-21)

0 n pa H a

Hence, the normal component of VIH is zero at the surface of a perfect

electric conductor, and the normal component of CE is equal to the sur-

face charge density.

1-6 THE EQUIVALENCE PRINCIPLE

Many source distributions outside a given region can produce the

same field within the region. Two sources producing the same field in

a region are said to be equivalent within that region. When we are

interested in the field in a given region, we do not need to know the

actual sources. Equivalent sources serve as well.

A detailed discussion of the equivalence principle can be found

in [i]. Basically, it involves dividing space into two (or more) regions

and assuming Maxwellian fields in each region. There is generally a

discontinuity in the field at the surface S which forms the common boundary

between the two regions. On this boundary we assume surface currents J

and M which are related to the fields by (1-16). We then have a Maxwellian

field everywhere and the sources which support it. If there is a one-to-

one correspondence between a field and its sources, we have then found

equivalent sources for the field in a given region. This one-to-one

correspondence is always obtained in the case of lossy media. It is not

always obtained in the loss-free case, as noted in Section 3-3 of [1].

The equivalence principle is best illustrated by means of a fairly

general example. Consider Fig. 1-3 and let S represent a mathematical



Ea, HO

MaE

(a) original a problem

b jb

Eb,/a

(b) original b problem

(c) equivalent to a external to S
and to b internal to S

Fig. 1-3. illustration of the Equivalence Principle.
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aasurface defined in space. In Fig. l-3a, let J , Ma be impressed sources

a aproducing a field E , H everywhere in a medium characterized by con-

a a b
stitutive parameters p and C . In Fig. l-3b, let J , M be impressed

b b
sources producing a field E , H everywhere in a medium characterized by

b b
constitutive paramete- p b and c . We now construct the equivalent

problem of Fig. 3c as follows. External to S, we specify that the sources

are J a, Ma, the field is E a , Ha , and the medium is Pa . Internal to S,, _,and.thetmediumtisS,

we specify that the field is E, H and the medium is b, C. To support

the discontinuity in fields on S, we must satisfy (1-16), or

x (H a Hb)

on S (1-22)

M~(E a b n

These are called the equivalent currents on S. Assuming that the relation-

ship between the field and its sources is one-to-one, we know that the

equivalent sources in Fig. 1-3c must produce the postulated field.

Some important special cases are: (1) the field in one region is

assumed to be the null field, (2) the medium in one region is assumed to

be a perfect electric conductor, and (3) the medium in one region is assumed

to be a perfect magnetic conductor. These cases are discussed in detail

in Section 3-5 of [11, and we use such cases in the next chapter.

1-7 INTEGRAL EQUATIONS

For some geometrically simple problems, solutions for the field

can be obtained by solving the differential equations. For more compli-

cated geometries, it becomes more convenient to use integral equations

or, more generally to use integro-differential equations to obtain

Iir



13

solutions. These solutions are usually approximate, and one method for

obtaining them is the method of moments, discussed in the next section.

A general procedure for establishing integral equations is to use

the potential integrals to find the fields in terms of the sources (actual

or equivalent) and then to relate the fields to the sources by boundary

conditions or constitutive relationships. The procedure is best illus-

trated by an example.

Let Fig. 1-4 represent a dielectric body V in free space, excited

by an impressed field E , which can be thought of as the field which

exists due to external sources when the body is absent. Let the con-

stitutive parameters of free space be denoted by cot Po and those of the

dielectric body by c, po. The total field within V induces a polariza-

tion current J related to the total field E by

J = jW (E - C )E in V (1-23)

In other words, J is the excess displacement current over what would

~E1 + ES

O, 
SO

Fig. 1-4. A dielectric body in free space excited

by an impressed field E
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exist there if V contained free space, E being unchanged. The total

field E is the sum of the impressed field Ei plus the scattered (or

secondary) field ES produced by J, that is

i 5
E = E + E (J) (1-24)

We can calculate ES (J) by the potential integrals, section 1-4, but

choose not to write down the explicit formulas. For now, it is suf-

5 5ficient to note that E is linearly related to J, that is, E () is a

linear operator. It involves an integral and some derivatives and

should properly be called an integro-differential operator. For bre-

vity, we shall call it simply an integral operator.

We now use the constitutive relationship (1-23) in (1-24) to

obtain

JE- c i + E s(j) in V (1-25)j(C C 0o)  -

This can be rearranged into the form

L(J) = Ei (1-26)

in V, where
J

(J J) -- E0(j) (1-27)

iis a linear operation. In (1-26), the impressed (or incident) field E

is known, L is a known integral operator, and J is the unknown to be

found.
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1-8 METHOD OF MOMENTS

The method of moments is a general procedure for solving operator

equations of the form (1-26). Its mathematical foundations lie in the

theory of projections in linear inner product spaces. A detailed but

elementary exposition of the procedure can be found in reference [8).

The following is a short outline of the method.

Suppose we have an operator equation of the form

L(f) = g (1-28)

where L is a linear operator, g is a known function, and f is an unknown

function to be determined. We must define an inner product <f, g> (or

symmetric product if f and g are complex) such that

(a) <f, g> = <g, f>

(b) <f 1 + af2 ' g> = 0<fl' g> + a<f 2
'g> (1-29)

(C) <f, f*> > 0 if f # 0

(d) <f, f > = 0 if and only if f = 0

Here a and 6 are scalars, and * denotes complex conjugate. In a complex

Hilbert space the usual inner product is <f, g >, and the conjugate oper-

ation is not shown explicitly. In electromagnetic theory it is more con-

venient to use the symmetric product <f, g> and show the conjugation

explicitly when needed.

We next choose a set of linearly independent expansion functions

or basis functions Ifl' f2' . } in the domain of L and represent f as the

linear combination
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f 0 nf (1-30)
n

where the a are scalars to be determined. For computational purposesn

the representation is usually approximate, as shown. Substituting

(1-30) into (1-28) and using the linearity of L, we obtain

n L fn z g (1-31)
n

We next define a set of linearly independent testing functions or weight-

ing functions (wi, w2, ...1 in the range of L and take the inner product

(or symmetric product) of (1-31) with each w . The inner product is

linear, and the result is

a <w, Lf n> = <w , g> (1-32)n n m
n

m = 1,2,3,.... This is a set of linear equations which can be written

in matrix form as

4~ +

[.]i = g (1-33)

where

[z] <w I , Lf 1> <Wi, Lf2> . . . (1-34)

Lf>L

Sg 1  <Wig g> (1-35)

a2  <w2 P g>

If the number of expansion functions equals the number of testing functions,
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[Z] will be a square matrix. The a and g are column matrices, also called

column vectors. If [k] is nonsingular, its inverse []-1 exists, and the

a is then given by

a= [z] g (1-36)

The solution for f is then given by (1-30) where a are the components of

n

a obtained from (1-36).

By defining a row matrix of the expansion functions as (where

the tilde is used to denote the transpose of a matrix in general)

f=f f2 f f .f ] (1-37)

we can write the solution concisely in the form

f g (1-38)

Finally, instead of the function f itself, we are often interested in

some functional (number) p which depends linearly on f. This can be

expressed in the general form

p = <h, f> (1-39)

where h is a known function (determined as a part of formulating the

problem). Substituting (1-38) into (1-39), we have

P 9[]-i (1-40)

where h is the row vector

=[<fl h> <f h> ...] (1-41)

29

In general, we call h a measurement vector. (It is characteristic of

the particular measurement p we wish to perform.) Every linear measurement

(functional) can be expressed as a matrix contraction of the form (1-40).
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Chapter II

A GENERALIZED NETWORK FORMULATION FOR APERTURE PROBLEMS

2-1 INTRODUCTION

This chapter considers a general formulation for a two-region aper-

ture problem. First an operator equation is obtained in terms of an

unknown equivalent magnetic current, and this is then reduced to a matrix

equation via the method of moments. The only coupling is through the

aperture, whose characteristics are expressed by aperture admittance

matrices, one for each region. These admittance matrices depend only on

the region being considered, being independent of the other region. The

aperture coupling is then expressible as the sum of the two independent

aperture admittance matrices, with source terms related to the incident

magnetic field. This result can be interpreted in terms of generalized

networks as two N-port networks connected in parallel with current

sources. The resultant solution is equivalent to an N-term variational

solution.

Since the problem is divided into two mutually exclusive parts, one

can separately solve a few canonical problems, such as apertures in con-

ducting screens, in waveguides, and in cavities, and then combine them in

various permutations. Computer programs can be developed to calculate

the aperture admittance matrices for classes of canonical problems,

such as apertures of arbitrary shape in conducting planes, in square wave-

guides, and in rectanguLar cavities. Such programs can then serve as

broad and versatile tools for designing electromagnetic networks with aper-

ture coupling.



2-2 GENERAL FORMULATION

Figure 2-1 represents the general problem of aperture coupling between

two regions, called region a and region b. In region a there are impressed

i i
sources J , M , and region b is assumed source free. The more general case

of sources in both region a and region b can be treated as the superposition

of two problems, one with sources in region a only, plus one with sources in

region b only. Each region of Fig. 2-1 is shown to be bounded by an elec-

tric conductor, although other types of electromagnetic isolation may be

used. Region a is shown closed and region b is shown open to infinity,

although each region may be open or closed. The equivalence principle,

discussed in Sec. 1-6, is used to divide the problem into two equivalent

CONDUCTOR

P EGION a. - APERTURE

OREGION b

Fig. 2-1. The general problem of two regions

coupled by an aperture.
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problems as shown in Fig. 2-2. In region a, the field is produced by

i i
the sources J , M , plus the equivalent magnetic current

M = n x E (2-1)

over the aperture region, with the aperture covered by an electric con-

ductor. In region b, the field is produced by the equivalent magnetic

current -M over the aperture region, with the aperture covered by an

electric conductor. The fact that the equivalent current in region b is

the negative of that in region a ensures that the tangential component of

electric field is continuous across the aperture. The remaining boundary

condition to be applied is continuity of the tangential component of mag-

netic field across the aperture.

The tangential component of magnetic field in region a over the

a
aperture, denoted H t, is the sum of that due to the impressed sources,

i a
denoted plus that due to the equivalent source M, denoted H'(M),

that is

a i a
H= H + H (M)
-t -t --

Note that H and Ha () are both computed with a conductor covering the

aperture. A similar equation holds for region b, except that the equil-

valent source -M is the only source. Hence, the tangential component

of magnetic field in region b over the aperture is

H b  Hb (-M) -H (M) (2-3)
-t --t - t

where H b(M) is computed with a conductor covering the aperture. The last
b

equality in (2-3) is a consequence of the linearity of the H operator.
-t

The true solution is obtained when Ha of (2-2) equals Hb of (2-3), or
-t



22

CONDUCTOR

(a) EQUIVALENCE FOR REGION a.

CONDUCTOR

-M
n

REGION b

(b) EOUIVALENCE FOR REGION b.

Fig. 2-2. The original problem divided into two

equivalent problems.
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-H (M) - (M) (2-4)

This is the basic operator equation for determining the equivalent

magnetic current M.

If (2-4) were satisfied exactly, we would have the true solution.

We use the method of moments to obtain an approximate solution.

Define a set of expansion functions {M , n=l,2,...,N}, and let
--n

M V M (2-5)
n-n

n

where the coefficients V are to be determined. Substitute (2-5) inton

(2-4) and use the linearity of the H operators to obtain-t

-Hna(M V Hb i( (2-6)
n t --n n-t -n -tn n

Next, define a symmetric product

<AB= Jj' A B ds (2-7)

apert.

and a set of testing functions lW~m, m-l,2, ...,N}, which may or may not be

equal to the expansion functions. We take the symmetric product of (2-6)

with each testing function W, and use the linearity of the symmetric

product to obtain the set of equations

- V<W, H a )> V <W, H b (j )> = <W Hi> (2-8)

n m t -n n m' t n m t
n n

m-1,2,...,N. Solution of this set of linear equations determines the

coefficients Vn and the magnetic current M according to (2-5). Once M

is known, the fields and field-related parameters may be computed by

standard methods.
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The above solution can be put into matrix notation as follows:

Define an aperture admittance matrix for region a as

ya] = [<_W ,Ha(Mn)>NN (2-9)
m t - x

and an aperture admittance matrix for region b as

[Yb] = [<-W ,H CM )>I (2-10)
mt --n NxN

The minus signs are placed in (2-9) and (2-10) on the basis of power con-

siderations. Define a source vector

-= [<W ,H 1  (2-11)

and a coefficient vector

V = [V n Nx (2-12)

Now the matrix equation equivalent to equations (2-8) is

ya + YbI = 1 (2-13)

This can be interpreted in terms of generalized networks as two networks

V1

REGIONo a REGION b

Fig. 2-3. The generalized network interpretation

of equation (13).
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[y and [Y ] in parallel with the current source I , as shown in Fig. 2-3.

The resultant voltage vector

+= ya -li (2-14)

V= Y+ I 1I2-4

is then the vector of coefficients which gives M according to (2-5).

It is important to note that computation of [Y aI involves only

region a, and computation of fY bI involves only region b. Hence, we

have divided the problem into two parts, each of which may be formulated

independently. Once [yaI is computed for one region, it may be combined

with [ya] for any other region, making it useful for a wide range of

problems. For example, the same aperture admittance matrix for radi-

ation into half-space would be useful for plane wave excitation of the

aperture, waveguide excitation, and cavity excitation.

2-3 LINEAR MEASUREMENT

A linear measurement is defined as a number which depends linearly

on the source. Examples of linear measurements are components of the field

at a point, voltage along a given contour, and current crossing a given

surface. Measurements made in region b will depend linearly only on the

equivalent current -M. Measurements made in region a will depend linearly

on the impressed sources J , M , as well as on the equivalent current M.

We now illustrate these concepts with a particular example.

Consider the measurement (computation) of a component ;i of mag-
m

netic field at a point r in region b. It is known that this component-in

can be obtained by placing a magnetic dipole KZm at r , and applying the
-in -in

reciprocity theorem to its field and to the original field, Section 3-8

of [1]. The original field in region b is given by the solution to

Fig. 2-2b. The problem involving the magnetic dipole, called the adjoint

problem, is shown in Fig. 2-4. Application of the reciprocity theorem



26

CONDUCTOR 
K

REGION b

Fig. 2-4. The adjoint problem for

determining H at r •in --n

to these two cases yields

H KZ = - M Hmds (2-15)
mm fl-

apert.

Here Hm is the magnetic field from K. in the presence of a complete

conductor, and H is the component in the direction of KZ. of the mag-in --n

netic field at r due to -M in the presence of a complete conductor.--n

To evaluate (2-15), substitute for M from (2-5) and obtain

HmKm  = X Vn <-Mn, e >  (2-16)
n

This can be written in matrix form as

H KZ. = F ' (2-17)

m vt

where Im is the transpose of a measurement vector
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m
n[<-Mn, H I N×I (2-18)

Note that the elements of im are similar in form to those of I given

by (2-11), except that -M replaces W . The minus sign difference-- n --n

reflects the fact that the equivalent source in region b is -M, in con-

trast to that in region a which is +M. Now substitute (2-14) into (2-17)

to obtain

in a b-i -i (2-19)
m m

If the magnetic dipole is of unit moment, then (2-19) gives H at rm -in

directly.

Every linear measurement in region b will be of the form (2-19).

For example, if a component of E at r were desired, we would place an
_- --n

electric dipole at r and apply reciprocity. In general, a linear measure-

ment involves applying reciprocity to the original problem and to an ad-

joint problem. A determination of the sources of the adjoint problem is a

part of the formulation of the problem.

If a linear measurement is made in region a, it will involve a con-

i i
tribution from the impressed sources J , M added to that from the equivalent

source M. For example, instead of (2-19) we would have

HK =i i mya b]-1+ (2-20)

mm = m m

where Hi is the magnetic field from Ji, M in the presence of a complete

conductor. Also, in region a we would define the measurement vector to be

[<Mn, H'>]NxI  (2-21)

instead of (2-18), because the equivalent sources are +M in region a in
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contrast to -M in region b. Note that it is the difference field H-H
i

in region a (due to M) that is directly analogous to the transmitted

field H in region b (due to -M).

2-4 TRANSMITTED POWER

A quadratic measurement is one which depends quadratically on the

sources. Examples of quadratic measurements are components of the

Poynting vector at a point, power crossing a given surface, and energy

within a given region. A particular quadratic measurement of considerable

interest is the power transmitted through the aperture, which we now

consider.

The complex power P transmitted through the aperture is basicallyt

Pt f E x H n ds (2-22)

apert.

where the asterisk denotes complex conjugate. Substituting from (2-1),

we have

et M Hds (2-23)

apert.

This involves only the tangential component of H, which in region b we

denoted by Hb (-M). For M we use the linear combination (2-5) and ob-
t -

tain
b b
H b(-M) - V H b(M) (2-24)
-t n-t -nn

Substituting this for H and (2-5) for M into (2-23), we obtain

t= - I JVV M • H (2-25)Pt m n m n --f - - -t-n

apert.

If M are real, the conjugate operations can be taken outside the
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integrals. Moreover, if M m 
= W " (Galerkin's method), then 

the negative

of the integrals in (2-25) are 
Yb* as defined by (2-10), and
mn

* Yb* 
(2-26)

Pt m m n in

i n n

This can be written in matrix form as

t = *- * 
(2-27)

Note that this is the usual 
formula for power into network [Y of

Fig. 2-3.

2-5 DISCUSSION

The basic formulation for two-region aperture problems 
is given

in this chapter. Only a single aperture is considered explicitly, 
but

the extension to multiple 
apertures is straightforward. 

In Chapter III,

we apply the formulation 
to the problem of apertures 

in plane conducting

screens. In Chapter IV, we apply it to waveguide-fed apertures. 
In

Chapter V, the formulation 
is specialized to cavity-backed 

apertures.

Chapter VI considers the 
case of a narrow slot in a thick conducting

plane. Chapter VII considers the 
case of an aperture in a 

plane screen

backed by a conducting body. 
Chapter VIII considers the 

equivalent

circuit for coupling through an aperture 
to a long wire. There are,

of course, infinitely many 
geometries that can be considered, and this

report treats only a representative 
cross section of these possibilities.

The basic principles remain 
the same regardless of the 

type of problem

being considered.
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Chaptec III

APERTURES IN PLANE CONDUCTORS

3-1 GENERAL THEORY

Consider a conducting plane covering the z=O plane except for an

aperture, as shown in Fig. 3-1. The two regions z >0 and z< 0 are

identical-half spaces, and hence their aperture admittance matrices

are the same. Therefore, we let

[ya + yb 2[Yhs] (3-1)

where [Y hSI denotes the aperture admittance for the aperture opening

into half space, say z > 0. When the aperture is covered by a conductor,

X

PLANE
CONDUCTORU M TO

INCIDENT POINT
WAVE Uj, km

n z

APERTURE

V

Fig. 3-1. Aperture in a plane conductor.
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the z =0 plane is a compiete conducting plane, and image theory applies.

The magnetic current expansion functions are on the surface of the z= 0

plane. Their images are equal to them and are also on the z=0 plane,

according to section 3-6 of [1]. The result is that [Y hS is the admit-

tance matrix obtained using expansion functions 2M radiating into free
-n

space everywhere. This problem is dual to that for the impedance matrix

of a plane conductor, a problem considered recently in the literature [2).

The original excitation of the aperture is by the impressed

sources Ji M in the region z < 0. The impressed field H used in the- -t

i ioperator equation (2-4) is the tangential magnetic field due to J , M

with the aperture covered by a conductor (Fig. 2-2a). In this case the

z = 0 plane is a complete conductor, and image theory again applies. The

result is that the tangential component of H over the z = 0 plane when it

is covered by a conductor is just twice what it is for the same sources

in free space. Hence,

Hi = 2H (3-2)
-t -t

where H is the tangential component of the magnetic field over the
-t

i i.aperture due to the sources J , M in free space. The components of

the excitation vector I defined by (2-11) are now

1 2 WJ W Hids (3-3)m f --ml -t

apert.

where W is the mth testing function.-in

A case of special interest is that of plane wave excitation.

A unit plane wave is given by

io e - j  "
H =ui e (3-4)
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10
where uI is a unit vector specifying the direction of Hi , k is the

propagation vector of magnitude 2ff/\ and pointing in the direction of

propagation, and r is the radius vector to an arbitrary field point.

These vectors are shown in Fig. 3-1. The components (3-3) of the

plane-wave excitation vector are then

i {j. -i -r
P = 2 W " u. e ds (3-5)

m f --I
apert.

The symbol P1 has been used for this particular vector to distinguish

it from the more general excitation vector (3-3).

Similar simplifications apply to the adjoint (measurement)

problem. For the evaluation of a component of magnetic field at a

point r , a magnetic dipole KU is placed at the measurement point r .

This radiates in the presence of a complete conductor over the z = 0

plane, and hence, analogous to (3-2), we have

= 2 1mo (3-6)-t = -tm
Here t denotes the tangential component of H over the aperture from

KQ when the z 0 plane is covered by a conductor, and Hm o denotes that

from K when it radiates into free space. The components of the

measurement vector I defined by (2-18) are now

IM 2 MJ --nM mds (3-7)

apert.

where M is the nth expansion function.

A case of special interest is that of far-field measurement.

This is obtained by a procedure dual to that used for radiation and

scattering from conducting wires [3]. To obtain a component of 11
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on the radiation sphere, we take a source Kki perpendicular to r

and let r -* -. At the same time we adjust KR so that it producesm m

a unit plane wave in the vicinity of the origin. The required

dipole moment is given by

i j__! -jkrm
K = 4 e (3-8)

KZ 47Trm m

and the plane wave field it produces in the vicinity of the origin is

-jkm .r

Hmoo
=u Me (3-9)

Here u is a unit vector in the direction of Hm , k is the propaga-
--i --

tion vector, and r is the radius vector to an arbitrary field point.

Again Lhese vectors are shown in Fig. 3-1. The components (3-7) of the

far-field measurement vector are then

-jk -r
PM= 2 M • u e - ds (3-10)

n -- n -TM
apert.

The symbol P is used for this particular measurement vector to

distinguish it from the more general measurement vector (3-7). The

far-zone magnetic field is now given by (2-19) with K given by (3-8),m

S=P p, i = p ,and Iya given by (3-1). Hence

-7 kr

H = -J r)e m Fpm1 yhS p (3-11)
m

The usual two radiation components H and H are obtained by orienting

K in the q and s directions, respectively.

i °n
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3-2 TRANSMISSION PARAMETERS

A parameter sometimes used to express the transmission character-

istics of an aperture is the transmission cross section T. It is de-

fined as that area for which the incident wave contains sufficient power

to produce the radiation field H by omnidirectional radiation over halfm

space. For unit incident magnetic field, this is

= 2 r 2 1
T = 2Trr H31.mm (3-12)

Substituting from (3-11), we obtain

L 22 [ 2 yhs - -i 2= Ji 3[-- Y F Pi (3-13)
3 21T

Note that T depends upon the polarization and direction of the incident

*i
wave (via P ), and upon the polarization measured and direction to the

measurement point (via P ).

Another parameter used to express the transmission characteristics

of an aperture is the transmission coefficient T, defined as

P
T = trans. (3-14)

Pine.

where Ptrans. is the time-average power transmitted by the aperture,

and P inc. is the free space power incident on the aperture. The inci-

dent power is

Pinc. =r S cos 0inc. (3-15)

where n - 4fE is the intrinsic impedance of free space, S is the
aperture area, and e is the angle between k and n. The trans-

inc. -=i

mitted power is
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Ptrans = Re(P ) (3-16)

where Re(P ) denotes the real part of P t given by (2-27) so that

I Rvyhs*[ -*
T = r S Re(V[Y I V ) (3-17)

Inc.

Note that T depends on both the direction of incidenL-, and on the

polarization of the incident wave.

Finally, because of symmetry about the z = 0 plane, the difference

field H-H which exists in the region z<0 is simply related to the

transmitted field which exists in the region z>0 . The difference field

in the region z < 0 is produced by an equivalent current M on a plane

conductor over the z = 0 plane. By image theory, it is also the field

produced in the region z<0 by the source 2M in free space. Analogously.

the transmitted field in the region z> 0 is produced by the source -2M

in free space. Hence, the difference field in the region z< 0 and the

negative of the transmitted field in the region z>O are both pro-

duced by the same magnetic current 2M radiating in free space.

3-3 ADMITTANCE MATRIX

If an admittance matrix [Y] is defined by [Y] = [Ya + Y b, then,

according to (3-1) and (2-10), the ij-thelement of [Y] is given by

Y = (ya + Yb) = _ 4<Wi ' H(M )> (3-18)

ii ij -j

where H(Mj) is the magnetic field produced by M radiating in free

space. In view of Sections 1-3 and 1-4, the magnetic field H(M1 )

can be expressed in terms of an electric vector potential F and mag-

netic scalar potential as [4]
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H(Mj) = - jwF. - Vp. (3-19)

wher F. -M-3 j_ k_ ds' (3-20)

apert.

F =4~~4 e.3 I-' ds' (3-21)

apert.

V M.
= - (3-22)mj -jW

where r and r' are respectively the vectors to the field and source

points in the aperture. Substituting (2-7) and (3-19) into (3-18), we

obtain

Y. =4 (F. + V,,.)ds (3-23)
ij Ji-J -

apert.

If the component of W. normal to the rim of the aperture vanishes
-1

on the rim of the aperture, then

f WJ ds =0

apert.

The above equation can be rewritten as

f0d s + VJ W, 1ds 0 (3-24)
apert. apert.

Hence, (3-23) becomes

Y =4jw (F - 4+ q m) ds (3-25)
ij ii -j 3i 1

where 
apert.

- - (3-26)
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We must now consider a specific problem in order to choose appropriate

expansion and testing functions.

3-4 THE RECTANGULAR APERTURE

The geometry and coordinate system for the rectangular aperture

in a conducting plane is shown in Fig. 3-2. For this problem, we

choose the set of testing functions W equal to the set of expansion

functions M." The rectangular aperture 0 < x < LxAx, 0 < y < L yAy

APERTURE

TO
INCIDENT 1MEASUREMENT
WAVE POINT

L X
z

CONDUCTING
PLANE

Fig. 3-2. Rectangular aperture in a conducting
plane.
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where L and L are integers is divided into rectangular subareasx y

of length Ax in x and Ay in y. The set M of expansion functions

is split into a set . of x directed magnetic currents and a set

M of y directed magnetic currents defined by

(- = 1,2,.. .L -

-1) =i T~() pY~), 1,2,...Ly 3-7

l =9TY(y)Px(x) p = 1,2 .. L x (3-28)

-p+(q-)L q 1,2,. ..L -1

where ^ and j are unit vectors. Tp(x) and TY(y) are triangle

functions defined by

x - (P-1)AX (p-l) Ax < x < pAx
Ax -

T'(x) = (P+)Ax - X pAx < x < (p+l)Ax (3-29)
p Ax_ _

oIx - pAxj > Ax

y - (g-l)Ay (q-l)Ay < y < qAy

TY(Y) (+l)Ay - qAy < y < (q+l)Ay (3-30)

q~Y Ay_ _

0 ly - qAyf > Ay

and Pp(x) and PY(y) are pulse functions defined by
p q

1 (p-l)Ax < x < pAx
p (x) (3-31)

0 all other x

I (q-l)Ay :S y < qAy

pY(y) - (3-32)

q
0 all other y
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x my ascae ih ad_

The magnetic charge sheets, say m. and my associated with 
andaMd
-1 j

are obtained from (3-22) as

-(px (x) - P,~ (x))PY(y)(3 )m x  = -PPl q(3-33)
p+(q-l) (L x-1) -jwAx

(PY(y) - pY (y))PX(x)

= q± p (3-34)
p+(q-l)Lx  -JwAy

Introduction of the two types of expansion functions M and My and the

two types of testing functions MX and My into (3-25) gives rise to

four Y submatrices defined by

Y = 4jw J (Fv • + Iv u= (3-35)--=3 Fi+ i d v = x~y
apert.

The mathematical details and approximations for numerically evaluating

(3-35) can be found in a research report [5].

3-5 PLANE WAVE EXCITATION AND MEASUREMENT VECTORS

The plane wave excitation vector P of (3-5) and the plane wave

measurement vector P of (3-10) are of the same form except for a minus

sign. We therefore need to evaluate only one of them, say the measure-

ment vector Pm. We specialize it to four principal plane patterns as

(P U)y -2 e ejkx cos dxdy (3-36)

apert.

yy -u2 jj M u .ji cos dxdy (3-37)

apert.
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(P mu 2 u eJkY cos dxdy (3-38)(el)xj xy(-8

apert.

(Pi x - 2-Mu e jky cos dxdy (3-39)

apert.

where u is either x or y. The superscript u is necessary because M. has--1

been split up into Mx and My of (3-27) and (3-28). In (3-36) to (T-39),
-i --1

A, i, s, and R are unit vectors in the 0, y, 4, and x directions respec-

tively where, as shown in Fig. 3-2, 0 is measured from the positive x axis

in the y= 0 plane and 4 is measured from the positive y axis in the x=0

plane. For measurement vectors, 00 < 0 < 1800, 00 < 4 < 1800. (P ) is. .. . " i t0y

for a 6 polarized measurement in the y = 0 plane, (PU is for a
1 yymu

polarized measurement in the y= 0 plane, (P )x is for a i polarized

measurement in the x= 0 plane, and (PU)x is for an _ polarized measure-

ment in the x= 0 plane. Because our set of testing functions W. is the-1

same as the set of expansion functions M., the plane wave excitation
-3

vector P of (3-5) is obtained by putting 1800 < 0_<3600, 1800 < 4 < 3600

in the negative of one of the equations (3-36) to (3-39).

Again the mathematical evaluation of (3-36) to (3-39) can be found

in the report [5]. A computer program, complete with operating instruc-

tions, for computing the transmission through a rectangular slot in a

conducting plane is given in Part Two of [5].

3-6 REPRESENTATIVE COMPUTATIONS

A number of representative computations using the above matrix solu-

tion is given in the report [5]. We summarize some of these results here.
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The first computations were made for a narrow slot, of width X/20

in the y direction of variable length L in the x direction. The far-zone

quantity plotted was the transmission cross section, given by (3-12),

where H is the component of magnetic field being considered. We usem

the notation:

2 r H 12 in they 0 plane
ey m e

(3-40)

= 27r r2 Hx 2  in the x = 0 plane.xx

We choose Ay = X/20 so that q = 1 in (3-27) and (3-28). In this case,

there are no y directed magnetic current expansion functions (3-28). Thus,

the matrix solution (2-5) for the magnetic current M is an x directed

vector. As a result, H = 0 in the y = 0 plane and H = 0 in the x = 0y

plane. In other words, for the case being considered, the components of

H orthogonal to those in (3-40) are zero.

Figure 3-3 shows plots of T and T for x-directed slots of width
Oy xx

/20 and length (a) L = X/4, (b) L = X/2, (c) L = 3X/4, and (d) L = X. In

all cases the excitation was due to a plane wave normally incident on the

conducting plane with the magnetic field in the x direction. Note the

large transmission cross section for L - X/2, case (b), due to the slot

being near resonance. The plots of T are of the same form as scattering

cross section from the complementary conducting strips, as known from

Babinet's principle.

Figure 3-4 shows plots of the equivalent magnetic current in the

aperture region for the same slots. Since M = 2 x E, they are also plots

of the tangential component of E in the slots. Again note the large

value of M for the case L = /2, which is near resonance. Note also that,
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0 .001 .00 .003 .004 0 .. 2 .3 .4

(a)
L)(b)

"T T l/ \2 

Tx, X

T 31/X a T

Fig. 3-3. Transmission cross section for slots of length L in the x
direction and width X/20 in the y direction. (a) L = k/4,
(b) L = A/2, (c) L = 3X/4, (d) L = X. Excitation is by a
plane wave normally incident on the conducting plane with
magnetic field in the x direction.



44

81800 8- ADD 4 -180.

W6- A. A -900 w6- 900

o x

oz 6_80 0 A ±A A

0 L 0 L
(a) 4(b)

8- -180 8- 10

z x x

(c) (d)

Fig. 3-4. Magnitude and phase of IM/E'i, where M is the x-directed
magnetic current and El is the incident electric field,
for the same slots as for Fig. 3-3, (a) L = /4, (b) L = X2
(c) L = 3 /4, (d) 1, X. Circles denote magnitude, tri-
angles denote phase.
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for short slots L < 3X/4), the M is almost equiphasal and closely approxi-

mated by a half sine wave.

Next, computations were made to test the rate of convergence of

the solution as the number of subsections was increased. A slot of

width A/10 and length 2A was chosen for the study. Again the excitation

is a plane wave normally incident on the conducting plane with the

magnetic field in the x direction. Figure 3-5 shows plots of r y and

T for the cases (a) 39, (b) 19, (C) 9, and (d) 4 triangular expan-xx

sion functions respectively. Note that the patterns (a) and (b) are

essentially the same, and pattern (c) is only slightly different.

They differ appreciably from (d), which results from only 4 expansion

functions. The difference in the solutions as the number of expansion

functions is decreased is better illustrated by plots of M, as shown

in Fig. 3-6. These are for the same cases as for Fig. 3-5. It can be

seen clearly how the computed equivalent current in the slot region

changes as the number of subsections is reduced. As a rule of thun.b,

for near-field quantities (such as D) one should use subareas of

length A/10 or less and for far-field quantities (such as 7) length /5

or less.

3-7 DISCUSSION

The computer program, given in Part Two of [5], is written ex-

plicitly for rectangular apertures, but the formulas are valid for any

aperture composed of rectangular subsections. Other apertures, such as

L-shaped, T-shaped, square O-shaped, etc., could be treated by appro-

priately changing the computer program. Apertures of arbitrary shape
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Te,' X 2 s

0 1.001.

22

.. /X "- W

T/X

(ic) (d)

Fig. 3-5. Transmission cross section when the number of expansion func-
tions is (a) 19, (b) 19, (c) 9, and (d) 4. Computations are
for a slot of length 2X in the x direction and width X/10 in
the y direction. Excitation is by a plane wave normally
incident on the conducting plane with magnetic field in the
x direction.
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2~ 2I 10

S0.4 0.8 -1.2 1.6 2.0 0.4 0.8 1.2 1.6 2.0
X/X X A

(c) (d)

Fig. 3-6. Magnitude and phase of I/Eul, where M is the x-directed
magnetic current and Ei is the incident electric field,
when the number of expansion functions is (a) 39, (b) 19.
(c) 9, and (d) 4. Circles denote magnitude, triangles
denote phase. Computations are for the same slot as
for Fig. 3-5.
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could be treated by approximating them by rectangular subsections. As

with all moment solutions, the size of the apertures which can be treated

depends upon the size of the matrix which can be computed and inverted.

The examples indicate that the rectangular subsections should have side

lengths not greater than 0.2 wavelengths for reasonable accuracy.

The aperture admittance matrix for radiation into half-space has

application to any problem in which one region is bounded by a plane

conductor, as shown in Chapter II. Hence, it can be used for a waveguide-

fed aperture in a ground plane and for a cavity-backed aperture in a

ground plane. These problems are considered in the next two chapters.
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Chapter IV

WAVEGUIDE-FED APERTURES

4-1 GENERAL THEORY

Consider now a uniform waveguide feeding an aperture in a con-

ducting plane, as shown in Fig. 4-1. In general, the aperture may be

of different size and shape than the waveguide cross section. The half-

space region z> O is the same as in the previous problem, Fig. 3-1, and

the analysis of the preceding chapter applies. An analysis of the

waveguide region is given below.

PLANE CONDUCTOR

TO
UM MEASUREMENT

POINT

WAVEGUI DE

I NCIDE NT _MODEN REGION a
ODE' -APERTURE 

REGION b

Fig. 4-1. Waveguide-fed aperture in a conducting plane.
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Let the excitation of the waveguide be a source which produces

a single mode, of unit amplitude, incident on the aperture. This mode

(usually the dominant mode) is denoted by the index o. The field trans-

verse to the z-direction can then be expressed in modal form as

(Sect. 8-i of [1]).

E-0
z  +Y i 

z

E =~ e0 + F e e.

(4-1)
-Yoz Yiz

H Y e ?'Ye u xe
-t 0 Z 0 1 1 Z

It is assumed that all modes, TE and TM, are included in the summation.

The y i are modal propagation constants

r Ji = Jk (/.) < X

7 i = (4-2)
..= k. v'l - (>A./)) A > A,

k G 1 X

where Ai is the ith mode cut-off wavelength, and ki = 27T/A i is the ith

mode cut-off wavenumber. The Y. are the modal characteristic admittances
1

' 7i/jo , TE modes

:Y. =(4-3)
1=

J:/-y i ' TM modes

0 is the reflection coefficient for the oth mode, and 1'i is the.complex

amplitude of the -z traveling component of the ith mode. The 9_ are

normalized modal vectors, so that the modal orthogonality relationships

are

j If e • ds =(4-4)

guide i- j

where the integration is over the waveguide cross section.
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To evaluate the aperture admittance (2-9) for the waveguide region,

we consider a single expansion function M on the z = 0 plane in the wave-
-- n

guide region. The tangential field produced by M will be of the form

(4-1), except that there is no incident wave. Hence, this field is

Et (Mn ) = A e e.
ni -'

(4-5)

aYi
z

nHt(M) A . e u xe
' n mln i -Z -ii

where the Ani are modal amplitudes. At z = 0 we have

M = u E a, = 7 A *u x e, (4-6)
- -z -t 0 ni--z -1

Multiply each side of this equation scalarly by u x e. and integrate
-z -

over the waveguide cross section, obtaining

M • u x e ds- A ( x e " ( x e.)ds (4-7)

-- n-z - i -f '- -J

guide guide

By orthogonality (4-4), all terms of the summation are zero except the

i = J term. Hence,

Ani = f Mn " uz x eids (4-8)

apert.

We have replaced the integral over the waveguide cross section by one

over the aperture, since M exists only in the aperture region. The ele-

ments of the aperture admittance matrix (2-9) are now given by

Ywg - - H- a (M)ds (4-9)

mn ifJ -M ll-Mn
apert.
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where the superscript wg denotes waveguide. The Ha of (4-9) is given-t

by the second equation of (4-5) evaluated at z= 0, so that

*y fA W u x eids (4-10)
mn i nli 1 -m -- z i

apert.

Now define the constants

B i f W • u ×e.ds (4-11)Bmi= J -M -Z --

apert.

which are similar in form to the A . of (4-8). The elements (4-10)

then are given by

ywg = B Y (4-12)
mn ni mi i1

Hence, all elements of the waveguide aperture admittance matrix [ywgI are

linear combinations of the modal characteristic admittance Yi" For

Galerkin's method, W = M n and Ai and B i are equal.

We next evaluate the equivalent magnetic current M, given by (2-5).

The incident field is given by the first term on the right-hand side of

(4-1). When the aperture is covered by a conductor, the waveguide is

terminated by a conducting plane. According to image theory, the tan-

gential magnetic field at z = 0 is then just twice the incident wave or

i = 2Y u x e (4-13)
t o--z --0

i -*1
This is the H used in (2-11) to evaluate the excitation vector I .

Hence, the components of the excitation vector are

=2Y W • u x e ds 2Y B (4-14)
m o0 JJ - -- o 0 no

apert.
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The total aperture admittance matrix is

[ya + yb = [yWg + yhS (4-15)

where [yWg) is the waveguide aperture admittance and [Y hs is the half-
-+

space aperture admittance. The coefficient matrix V is given by (2-14)

with the admittance matrix given by (4-15), or

V = [yWg + yhs] l1i (4-16)

Finally, the equivalent magnetic current M is given by (2-5) whore the

coefficients V are the components of V.n

Once M is found, the modal amplitudes . in (4-1) can be evaluated

from (2-1) and the orthogonality properties of the modes. From (2-1)

and (4-1), we have

M = u x E = u xe + u u z e (4-17)
- z -- t -Z

z=0i

Now multiply each side scalarly by u x e and integrate over the wave-
_-Z -:j

guide cross section. By the orthogonality relationships (4-4), all

terms of the summation vanish except the term i= j. The result is

I + i=0

eM u x e.ds 0 (4-18)

guide lj, i# 0

Here the integration over the guide can be changed to that over the

aperture because M= 0 except in the aperture. Substituting for M

from (2-5) into (4-18), and using the definitions (4-8), we have

)vA -I+o
n no 0

n
(4-nl)

n
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Finally, by defining modal measurement vectors as

Ai = [A ni]Nxl (4-20)

and using (4-16), we can write (4-19) as

I + r 0 0 [yWg + y - (4-21)
0 0

and, for i # 0,

I. [Y + Y 1 (4-22)

The parameter of most interest is no, the reflection coefficient of

the incident mode. This is often expressed in terms of an admittance

1 - r
_ 0 (4-23)ipli+F 0

0

which is the equivalent aperture admittance seen by the incident

mode.

The region z> 0 for the waveguide-fed aperture is the same half-

space region as existed in the previous problem of an aperture in a

conducting plane. Ifence, evaluation of the fields in terms of M in this

region is done in the same way as in Chapter III. For example, the u

component of the far-zone magnetic field at a point r is given by

-jkr yhs -1 -1
H = r _ c P [Y + Y 1 (4-24)m 4l r

m

hs -14i
which is (3-11) with the term (2Y I P replaced by (4-16). The excita-

tion vector I has elements given by (4-14), and the far-field measure-

ment vector P has elements given by (3-10). The power gain pattern G is

the ratio of the radiation intensity in a given direction to the radi-

ation intensity which would exist if the total power Re(Pt) were radiated
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uniformly over half space, or

2 2
2r njH mI

G -Re(P) (4-25)
t

Substituting for H from (4-24), we havem

W2 _2 T hs -4- 2
G= Re(Pt ) I[yg + y (4-26)

where Pt is given by (2-27). Note that this gain is a function of

the H component measured, as well as direction to the field point.

4-2 APPLICATION TO A RECTANGULAR WAVEGUIDE

We now apply the general theory to a rectangular waveguide feeding

a rectangular aperture in a conducting screen. Figure 4-2 shows the

problem to be considered and defines the coordinates and parameters to

be used. The perfectly conducting plate covers the entire z = 0 plane

except for the aperture which is rectangular in shape with side lengths

L xAx and L Ay in the x and y directions respectively. L and L arexy x y

positive integers and L > 2. The aperture is fed by a rectangular

waveguide. The excitation of the waveguide is a source which produces

one mode, of unit amplitude, which travels toward the aperture.

The general method of solution discussed in Chapter II is to cover

the aperture with a perfect electric conductor, to place magnetic cur-

rent sheets +M and -M respectively on the left-hand and right-hand sides

of this conductor, to obtain an integral equation for M by equating the

tangential magnetic fields on both sides of this conductor, and to SOlVe)

this integral equation using the method of moments. The testing func-

tions are the same as the expansion functions for M and are denoted by M..
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X

RECTANGULAR
WAVECU IDE

7

(o,b)- IPLANE

Iz

Y

Fig. 4-2. A rectangular waveguide radiating through a rectangular
aperture into half-space bounded by an electric conductor.

Each M. is a triangle in the direction of current flow and a pulse in-1

the direction perpendicular to current flow.

Expression (4-8) for Aij requires a knowledge of the expansion

functions I and waveguide modes e.. The set M of expansion functions

is split into a set MC of x directed magnetic currents and a set My of
-i d

y directed magnetic currents defined by
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A xI p=l,2,...L x-1

MX = 2c TX (x-x ) PY(Y. ) pl,, (4-27)

My  
x T(Y-Y)P;(X-X) fp=1,2 .... L x -28)

--p+(q-l)L x q 1 p 1 q12..=+(-)x *q=l, 2,..t -il4-8

y

where TX (x) and TY(y) are triangle functions defined by (3-29) and
p q

(3-30), and PX(x) and PY(y) are the pulse functions defined by
p q

(3-31) and (3-32). An evaluation of the matrix [ywg] is given in

detail in [2]. An evaluation of the matrix [Y hSI is the same as

that for the rectangular aperture, given in Sect. 3-4 of the pre-

ceding chapter. The listing and documentation of a computer program

for the problem of Fig. 4-2 is given in Part II of the report [2].

4-3 SAMPLE COMPUTATIONS

In this section we give some representative computations for

the aperture of Fig. 4-2. Figure 4-3 shows computed results for a

rectangular waveguide of dimensions X by X/2 radiating into half

space through a narrow centered rectangular slot of dimensions N by

X/10, that is, a = A and b = X/2. Figure 4-3(a) shows the x-component

of equivalent magnetic current, which is also equal to the y-component

of tangential E field in the slot. No y-component of magnetic current

was obtained because only one pulse in y was used. M is normnllzedt

with respect to

ab' fJe I% dx dy (4-33)
guide

where the integral is over the waveguide cross section. In other words,

the normalization factor is the root-mean-square value of the 1% field
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of the incident wave. The phase of M is with respect to that of this E

field at the aperture. All computations are for dominant TE10 mode

excitation. Figure 4-3(b) shows the radiation gain patterns in the

two planes x 0 and y = 0. The notation G y denotes the gain pat-

tern due to H in the y 0 plane. The notation G denotes the0 xx

gain pattern due to H in the x = 0 plane. The horizontal axis inx

Fig. 4-3(b) is the z axis.

Figure 4-4 shows a plot of the equivalent aperture admittance

Y seen by the dominant mode of an open-ended square waveguide ofap

width a radiating into half space. It is defined by (4-23), where

.003 -COMPUTED~c
0MSUREDcOHEN, CROWLEY, LEVISMEASUREDJ

0 COMPUTER PROGRAM

.002 0-

U)
0 .001

0

-.001r I. 0 I I I i I

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0/X

Fig. 4-4. The equivalent aperture admittance seen by the dominant mode
for an open-ended square waveguide of width a radiating into
half space. Our computed results are compared to those cal-
cuilated and measured by Cohen, Crowley, and Levis [3].
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P' is the reflection coefficient and Y is the characteristic wave
0 0

impedance, both for the dominant mode. Our computations are com-

pared to some previously obtained by Cohen, Crowley, and Levis [3].

Also shown are measured values reported in [3]. Additional numerical

computations are given in the report [2].
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Chapter V

CAVITY-BACKED APERTURES

5-1 THEORY FOR A CYLINDRICAL CAVITY

An important special case of the cavity-backed aperture is that

where the cavity is a finite cylinder of arbitrary cross section. The

aperture exists at one end of the cylinder, and the other end is com-

pletely covered by a conductor. The cavity can then be viewed as a

short-circuited waveguide and waveguide theory applied. Figure 5-1

represents a typical problem, where the excitation is by an incident

plane wave from the half-space region.

* plane conductor
incident u i

wove

region b -- conductor

aperture

I z
cylindrical cavity

region a

Fig. 5-1. A cavity-backed aperture where the cavlty iS
formed by a shorted waveguide.
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The half-space part of the problem is identical to that treated

in Chapter 111. For a unit incident plane wave of polarization ui

and propagation vector k., the excitation vector remains that of (3-5).
-1i

For a given set of expansion and testing functions, the aperture

admittance matrix of region a remains the same as that for Section 3-1,

denoted by [Y hs. The new aspects of the problem are those of deter-

mining the aperture admittance matrix for the cavity region, which

4cay ±
we denote by [Y ]' and the measurement vectors I for various de-

sired field quantities.

The field in the cavity region can be expanded in terms of short-

circuited waveguide modes. For a cavity depth d, the transverse to z

components of an arbitrary field can be written as

sin ki(d-z)
E= - A.i, i n'~ (5-1)-t i sin k d

cos k i(d-z)

t i -(z -ei sinkd (5-2)1i

Here e. are the normalized modal electric field vectors (discussed in
-I

Cha.pter IV, Yi are the modal characteristic admittances, and k. are the

modal wave numbers. The term sin k.d is placed in the denominator for

later convenience. The summations in (5-1) and (5-2) are assumed to be

over all modes, both TE and TM if necessary. In particular, the modal

wave numbers are
v k -- (NOll % id

c iic
ki. -=7 ,  % I ,(5-3)

1 {.kic Trc > c
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where Xic = 27T/kic is the ith mode cut-off wavelength. The modal

characteristic admittances are

k i /' TE modes

Yi =  (5-4)

(E/ki  TM modes

The intrinsic wavenumber k may be complex if .i and/or c are complex

to account for a lossy medium in the cavity. The e. are normalized

modal vectors, so the modal orthogonality relationships are

ff e (5-5)

S, i=j

Here the surface of integration S is the cavity (waveguide) cross section.

To evaluate the aperture admittance (2-10) in the cavity region, we

consider a single expansion function M on the z = 0 plane inside the

cavity. The only source in the cavity region is M , hence the tangential

field produced by M is of the form of (5-1) and (5-2). Using the bound-

ary condition M = - u x E and specializing (5-1) to z = 0, we have
-l -Z -

M = -u XE = A .u X e. (5-6)
-~ z -1-n -z -tz =0 i ni--z --

Here the additional subscript n is placed on Ani to denote that it is

that due to M . Multiplying each side of (5-6) by u x e. and inte-
-n -z -3

grating over the cross section S, we obtain

f' M4 n -i u e ds A n x~ eJ i u x e i )ds (5-7)-- - :- i

s S

By orthogonality (5-5), all terms of the summation are zero except the

1-J term. Hence,



64

Ani =  f M n , e U z ds (5-8)

apert.

We have replaced the integral over S by one over the aperture because

M exists only in the aperture region.-11

The elements of the aperture admittance matrix (2-10) for the

cavity region are now given by

yCav f -W H b(M )ds (5-9)
mn JJ _M -t-

apert.

The H b of (5-9) is given by (5-2) evaluated at z = 0, so (5-9) becomes

cav
Y j A AY. cot(kid) W • u × e ds (5-10)mnniii if M -z

apert.

We now define the constants

B ff W u × ds (5-11)

apert.

which are similar in form to A ni given by (5-8). Then the admittances

(5-10) are gi,.en by

ym -j A B Y cot(kid) (5-12)

mca ni Bmi i (-2

Hence, the elements of [Y cav are linear combinations of the input wave-

guide admittances for each short-circuited waveguide mode.

Some specific quantities of interest in the solution are (a) the

equivalent magnetic current M, or tangential E in the aperture, (b) the

amplitude of some specific mode, and (c) the electric field intensity

at some point in the cavity. Once M is obtained, then quantities (b)

and (c) are easily obtained.
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We have the equivalent magnetic current given by (2-5) where V nn

are the elements of V, obtained from (2-14) specialized to the present

problem. This result is

= hs c -l+ y - (5-13)

where the elements of P are given by (3-5). The modal amplitudes A.
1

are obtained from (5-6) as it applies to the total magnetic current in

the cavity, which is -M. The result is

-M = A. u x e. (5-14)
I --Z --I1

Again we multiply each side by u x e, and integrate over the cross--z -3

section S, as in (5-7), to obtain

A F __ f(!) d (5-15)
apert.

Substituting for M from (2-5), and using (5-13), we have

A-hs cay -l I (516Ai = _ AV =-_ty +Y ] P (5-16)

where A is the row vector with elements given by (5-8). Hence, the

measurement vector for obtaining mode amplitudes is the vector A.

Finally, to obtain the E field at any point in the cavity, we--t

use (5-1) with the Ai given by (5-16). At a frequency near resonance,

that is, where sin k d z 0 for some j, a good approximation to the

field (5-1) is given by only the Jth term of (5-1), or

sin k (d-z)

-t -j sin k.dJ
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If the cavity is truly loss free, then (5-17) seems to predict an

infinite field at resonance. This, however, is not correct, since

Aj - 0 as sin k jd - 0 giving a finite value for E at resonance.i-t

The excitation of the resonant mode must then be determined from the

orthogonality condition

H M • u x e. ds =0 (5-18)

apert.

However, the theory for this special case will not be considered here,

since it requires considerable modification of the formulas of this

section.

5-2. APERTURE BACKED BY AN ARBITRARY CAVITY

When the cavity backing the aperture is of arbitrary shape, there

are several ways of calculating the field in the cavity. One way is

completely modal. This is the method used in this chapter. Another

way is a nonmodal approach, similar to that used in [2]. That method,

however, will not be considered here.

Figure 5-2 represents the cavity part of a problem of the type of

Pc on ductor

Fig. 5-2. Equivalence for cavities of arbitrary shape.
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Fig. 5-1, except that the cavity is now of arbitrary shape. It is

desired to calculate the field E and H in the cavity region R, com-

pletely enclosed by a conducting surface S, and excited by the

equivalent current M over the aperture surface. In general, the

magnetic field in R can be represented as the sum of a curl-free

(irrotational) part Hcf plus a divergence-free (solenoidal) part

df
H , that is

H Hc f + Hd f  (5-19)

The division (5-19) is not necessarily unique, since part of the field

may be both curl-free and divergence-free. For simplicity, we re-

strict consideration to simply-bounded and simply-connected cavities.

The modal representation of the magnetic field in a cavity

bounded by a perfect electric conductor is available in textbooks

[31, [4]. The use of this representation for aperture problems is

summarized well in [5]. The divergence-free part of the field can be

represented in terms of resonant cavity modes H as

Hdf = 2 2 (-) d s (5-20)
i k -k i f

i apert.

The H are solutions to the eigenvalue problem

2V x V x H = k H in R (5-21)
_ - i i-i

n xHi =0 on S (5-22)

2 2 >0aeue n(-0 h
The eigenvalues ki are real, and only k2 > 0 are used in (5-20). The

elgenvectors H are also real, and orthonormal according to
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SI H !! ds={ (5-2 3)
R 1 1 j

The Hi defined above are the usual resonant modes of time-harmonic

fields in the cavity.

The curl-free part of the field can be expressed in terms of

"static modes" as

H = G(r) -M • ds (5-24)

apert.

where

G =- -i(5-25)

_2 2
= 2 i2i  in R (5-26)

i

= 0 on S (5-27)

2The modal vectors G i satisfy (5-21) and (5-22) for k i = 0, that is,

for zero eigenvalue. Hence, we can think of ki f 0 as being an eigen-

value of infinite degeneracy. The G are real and orthonormal accord-

ing to

ff G C1 .G ds (5-28)

Also, since H~d  is orthogonal to H~c  in general, we have
-_j

R

for all i and J. The total field in R is simply the sum of (5-20)

and (5-24) according to (5-19).
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There is an alternative form for (5-24) which is sometimes con-

venient. This is

Hf (5-30)

where

S (r) (-m) i ds (5-31)

apert.

Here m is the magnetic charge associated with M according to the equa-

tion of continuity

m = V . M (5-32)

The i are still solutions to the eigenvalue problem (5-26) and (5-27),

and orthonormal according to (5-28) where G is given by (5-25). The
-i

derivation of (5-31) from (5-24) involves substitution for C. from-1

(5-25) and application of the divergence theorem to the integral over R.

As shorthand notation, we can define the set of modes {F.; to be

{fG H }, that is, to include all modes. Then the total magnetic ficld

can be written as

jwc F.(r) f (-1). Fi ds (5-33
i k -ki f

i apert.

where 0 # j

Hf F JF dst O -3!+
R i j

This is the form used in Sec. 8-13 of [1]. However, we must remember

that there are an infinite set of modes associated with the ei cnvaltue

2
k 0.

To obtain the aperture admittance elements for the cavity region

we use (5-9) where Hb is now given by (5-33) with M replaced by M , or
'n
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the sum of (5-20) and (5-24) with M replaced by M . The result is

yaV a b' b-- ia 1 a' i - k (5-35)

mn W m ni k -

where

ni
f= •G ds (5-36)

a. apert. [1W d

b'i apert.

Once again we have the possibility that, for a loss-free cavity, one

or more terms of (5-35) can become infinite at resnnance, that is,

when k = k.. In the case of lossy cavities this does not occur, althoughJ

numerical problems may arise if the cavity is only slightly lossy.

The magnetic field produced by the nth expansion function is given

by substituting*M into the sum of (5-20) and (5-24), or
-n

-1i G+j b ni -iH
H(M ) = J aiGi + j 2 2 (5-38)

i k i

where ani and bni are given by (5-36) and (5-37). The electric field

is obtained from (5-38) according to jwcE = V > H, resulting in

b V xH
E(M ) = ni -- (5-39)

i - k

Note that the first summation of (5-38) vanishes when (5-39) is

derived, since x G, = 0. Both E and H are linearly related to
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magnetic current. Remembering that the source in region b of the original

problem is -M, we can use the superposition (2-5) to obtain the total mag-

netic and electric fields in the cavity as

H - V H(M ) (5-40)
tr-- -- nn

E=- V E(M) (5-41)

n

Here the elements of V are obtained from (2-14) in general. For the par-

ticular case of a cavity-backed aperture in a conducting plane, V is

given by (5-13) where [ycav] now has the elements (5-35). In (5-40), the

coefficient of the jth static mode Gi is

1 1 a (5-42)
3 jWP1 n anj jW j

where ai is the row vector with elements anj given by (5-36). Using

(5-13) for V, we have for the amplitude of the jth static mode

aj = jhj [v+ -I i (5-43)

Similarly, the coefficient of the jth resonator mode H . in (5-40) is

b. V 2 n b (5-44)

k-k n nj k2_k2

where b is the row vector with elements b given by (5-37). Again
i nj

using (5-13) for V, we have for the amplitude of the jth resonator mode

bj = k 2_c ba [Yh -YPN (5-45)

j 2 2 bj

k-k

Hence, a/j w1 and -Jwcb /(k -k ) are the measurement vectors for deter-

mining a mode amplitude.

AW
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In the vicinity of a resonant frequency in a relatively loss-

free cavity, only one term of (5-38) and (5-39) may suffice to approxi-

mate the field. For example, if k is near k., then

H b. H. (5-46)

b V xH

j We (5-47)

If the cavity is truly loss-free, then (5-47) appears to predict an

infinite field at resonance. Again this is not correct, since

X Vnbnj 0 as k - k. In this case the excitation of the resonant mode
n
must be determined from the orthogonality condition

iA i M • H. ds - 0 (5-48)

apert.

Again we will not consider this special case here, since considerable

modification of the formulation is required.

5-3 DISCUSSION

A general formulation for a cavity-backed aperture in an infinite

conducting plane has been given in terms of generalized network parameters.

The approach is also valid for a cavity-backed aperture in a conducting

body of arbitrary shape, but then the calculation of the excitation and/or

the measurement vectors is more difficult.

Two interesting specializations of the general theory are (a) the

low frequency case where cavity dimensions are small compared to wavelength

L.d



73

and (b) the resonant case, particularly in the vicinity of the first

resonance. It is hoped that the general theory can be simplified for

these cases, allowing us to derive relatively simple equivalent circuits.

These topics require further investigation.
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Chapter VI

ELECTROMAGNETIC TRANSMISSION THROUGH NARROW SLOTS

IN THICK CONDUCTING SCREENS

6-1 INTRODUCTION

The first accurate treatment of electromagnetic coupling through

small holes was for zero-thickness conductors, and used the concept of

aperture polarizability [1], [2]. This theory has found extensive appli-

cation in the literature (see [3] for a bibliography). When the aperture

becomes larger and/or the conductor has thickness, the olarizability

concept becomes inadequate and the generalized admittance concept should

be used. In this chapter we apply the admittance concept to narrow,

infinitely long slots (sometimes called slits) in a conducting plane of

finite thickness. The concepts we use are general, applying also to

three-dimensional problems, but we here consider only the two-dimensional

case.

The problem of a slot in a thick conducting screen has been con-

sidered by several methods (see [4] for a bibliography). It was treated

by the generalized admittance concept for the TE (transverse electric

to the slot axis) case in [4]. A similar solution for the TM (transverSe

magnetic to the slot axis) case can be found in [5]. For narrow slots

in thick conductors, only the transmission line mode, which is a TE mode,

can propagate through the slot region. All higher order TE modes, and

all TM modes, are cut off. Hence, we restrict explicit consideration

to the TE case. The solution used is basically a simplification of the

general solution [4] for -he narrow slot. This results in relatively
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simple formulas, and a simple equivalent circuit, for narrow slots in

conducting screens of finite thickness.

6-2 FORMULATION OF THE PROBLEM

The problem to be considered is shown in Fig. 6-1, which represents

the cross section of a conducting screen of thickness d in which a slot

Y

conductor

region a d region c
F~a, /.LC, c@

regionb T
Al I Ib' -$ - X

"\Az

conductor

xuO xtd

Fig. 6-1. A uniform slot of width w in a perfectly conducting

screen of thickness d.
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of uniform width w is cut. The left-hand half space (x < 0) is called

region a, the uniform slot region (0 < x < d, 0 < y < w) is called

region b, and the right-hand half space (x > d) is called region c. The

boundary common to regions a and b is called the aperture A1V The

boundary common to regions b and c is called the aperture A2. Regions

a, b, and c are each filled with homogeneous media of constitutive

parameters (., c a), (vIb' Eb), and (p. , c) respectively. Each b and F

can be considered complex to account for dissipation. The excitation

is due to known sources Ji and M i in region a. It is desired to obtain

a solution for the field in each region, and for the power transmitted

into region c.

As described in Chapter II, the equivalence principle can be used to

divide the original problem into three equivalent parts, as shown in

i iFig. 6-2. In Fig. 6-2a, we have the original sources J , 1 , plus the

equivalent magnetic current M , where

M, x E (6-1)

over the aperture region A1 , all radiating in the presence of a compleLe

conductor (aperture A shorted). In (6-1), £ is the x-directed unit vector,

normal to A1 , and E is the electric field in the aperture AI in the original

problem. In Fig. 6-2b, we have the equivalent magnetic currents -MI, given

by (6-1), over A1 , and -M2 , given by

M - E (6-2)

over the aperture region A2, all radiating in the presence of a conductor

completely enclosing the rectangular region b (both apertures shorted).
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conducting plane
/zero field

Mi A,

region a X

x 0

(a) Equivalence for region a

Y

(0,w) (d,w)
z region b rectangular

zero field -MI -M2  
-  conducting

Lb E'b  [cylinder

-~x

(0,0) (d,0)

(b) Equivalence for region b.

conducting

plane region c

A2 fM2

- xzero field

xad

(c) Equivalence for region c.

Fig. 6-2. The problem divided into three equivalent parts.

LOO
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In (6-2), the unit vector , is normal to A 2, and E is the electric field

in the aperture A2 in the original problem. Finally, in Fig. 6-2c, we

have the equivalent magnetic current M2, given by (6-2), over the aper-

ture region A2, radiating in the presence of a complete conducting plane

(aperture A2 shorted).

The use of MI in Fig. 6-2a and -M1 in Fig. 6-2b ensures the conti-

nuity of the tangential components of E across the aperture A1 * The use of

-M in Fig. 6-2b and M in Fig. 6-2c ensures the continuity of the tan-
-2 -2

gential components of E across the aperture A . The remaining boundary

conditions to be enforced are the continuity of tangential components of

H across A and A By the method used in [41, we obtain the following

two operator equations:

Ha (M H b b(M H b Y,)= Hsc over A1  (6-3)
-it - -t -1 -- --(~2) _

b b c-H (M)-H t(M -H (M) = 0 overA (6-4)

Here H (M ) is the operator which gives the tangential component of H due
-t ---i

to the current M radiating in region p, with all apertures shorted. Hsc
-qt

_ i Mi
is the tangential component of H due to the impressed sources J , M in

region a with aperture A shorted. In terms of the current J sc which

exists on the shorted aperture A in Fig. 6-2a,

HSC = j (6-5)-t - -

In Chapter II, Hsc was called the field due to the impressed sources

i
and denoted by H Others 16] have called it the generator field and

denoted it by H .-g
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A convenient way to reduce the operator equations (6-3) and (6-4)

to matrix equations is the method of moments [7]. The procedure can

be summarized as follows. Define sets of expansion functions {M } in
-in

A and {Mn} in A2, and express the equivalent magnetic currents as1 -2n 2

N1

M =  I Vn M (6-6)
n~1

N2

M = V2 M2  (6-7)

n1

where VIn and V2n are coefficients to be determined. Define a symmetric

product for each slot as
w

<A, A • B dy (6-8)

where q = I or 2. The integrand in (6-8) is evaluated at x = 0 when

q = I and at x = d when q = 2. Define sets of testing functions

{_W I in A and {W ) in A2 . Substitute (6-6) and (6-7) into (6-3)
:-lm 1 -2m 2

and (6-4), and test the resultant equations with each W m , m=1,2,. .,N I ,

and W 2m m1,2,...,N 2 " The result is

a b ++ b -* p(69
[Y I]VI f + [Y1]VI + (Y121V2 =i (6-9)

b 1,V + b ) c -* = (6-10)

[Y21 1  Y22 V2 
+  Y22JV2

where

[yP = - <W ,HP(M )> (611
qr qm' t rn q N xN (6-1i)

q r

Vr = [Vrn]N 1 l (6-12)
r

i= [<W t I, N x > (6-13)

Im t 1iNIX1 1'
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P

The matrices [Y qr are called the generalized admittances, the vectors

V are called the generalized voltages, and the vector I is called the
r

generalized source current. A solution to the problem is obtained by

solving the matrix equations (6-9) and (6-10) for V1 and V2 , which deter-

mine the magnetic currents by (6-6) and (6-7). Once the equivalent

magnetic currents are known, the fields in each region can be obtained

from the equivalent problems of Fig. 6-2.

6-3 SPECIALIZATION TO NARROW SLOTS

As noted in the introduction, rigorous solutions to the general

problem can be found in the literature. We here consider only an

approximation which, as we shall see, gives highly accurate solutions

for narrow slots. We consider only the case of TE excitation because,

as noted earlier, all TM modes in a narrow slot region are cut off.

The approximate solution is basically a one-term moment solution

to the general problem. For a testing function in each aperture, we

choose the constant (integrated value unity)

W = W = W = i w (6-14)
!-1 1 -21 - - w

This is the H field variation of the transmission line mode in region b,

and is orthogonal to all higher-order waveguide modes. For now, the

expansion function in each aperture

M1 2 = M 2 = f(y) (6-15)

will be left undefined as to its functional form f(y). However, so

that M excites the transmission line mode the same regardless of its

functional form, we require
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w

w f(y) dy = 1 (6-16)

0

for all "trial functions" f(y). In other words, the net magnetic

current is unity.

The general network equations (6-9) and (6-10) now reduce to scalar

equations

yavl + b + V =b (6-17)1 11 1 12 2

b b +yCv =0 (6-18) 
Y21V1+ Y22V2 2

where

w

a -dy (6-19)w 0

is the aperture admittance of A looking into region a, and

w

Y~ zi f Ht () dy (6-20)

0

is the aperture admittance of A2 looking into region c. The matrix of

admit tances

Y b Yb -JYot kbd -jY csc kbd

11 Y12 0o

(6-21)

72 l  Y22 -JYoCSC kvd -JYot kbd

is the two-port admittance matrix for a parallel-plate transmission line

of length d, characteristic admittance Yo = 1/w , and propagation constant

Jkb, where nb and kb are the intrinsic impedance andwave number of region b.

The impressed current is
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w

I f Hs c dy (6-22)
W Z

0

which is the average surface density of electric current over the

short-circuited aperture. The approximations to the equivalent

magnetic currents in the apertures A and A are now
1 2

M = ViM and M 2 V2M (6-23)

respectively. The equivalent circuit for this approximation to the narrow

slot is shown in Fig. 6-3.

It is well-known that the aperture admittance of a thin slot open-

ing into half space is insensitive to small variations in the tangential

electric field in the slot about its true value [8]. We here consider

three cases, all of which result in an aperture admittance of the form

ya [7 - 2j ln(C kaW) (6-24)
aa

for region a, and of the same form with all a's replaced by c's for

A, At
d

+u Transmission Line
I,

~+V2

Fig. 6-3. Equivalent circuit for a narrow slot in a thickt

londucting screen.
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region c. In (6-24), na9 x , and ka are the intrinsic impedance, wave-

length, and wavenumber of medium a, respectively, and C is a constant

depending on the choice of f(y). If the tangential electric field in the

slot is assumed constant, then [8]

3/2
C = y/2e z 0.1987 (6-25)

Here y = 1.781... and e = 2.718... . If the tangential electric field

is assumed to be the quasi-static solution for a right-angle flange,

then [91

C = y/fe z 0.2086 (6-26)

Finally, if the tangential electric field is assumed to be the quasi-

static solution for a slot in a zero-thickness screen, then [10]

C - y/8 z 0.2226 (6-27)

Since C is in a logarithmic term in (6-24), it makes little difference

which value is chosen. However, so that our solution remains strictly

valid as the thickness d - 0, we choose (6-27).

A parameter of interest is the transfer admittance

Y = i (6-28)
12 V 2

which allows one to calculate the strength of M = V given the excita-
:-2 21

tion Ii of (6-22). From transmission line theory and circuit theory applied

to the equivalent circuit of Fig. 6-3, we obtain

ayc

YI2. -(Ya + Y C)cos kbd - J(Yo + Y- -)sin kbd (6-29)
0
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The power transmitted through the aperture is equal to that dissipated

in Y of the equivalent circuit, that is

Ptrans IV2 1 2 Re(YC) (6-30)

In terms of the transfer admittance, this is

i2
P = - Re(CY) (6-31)
trans Y1

where Ii is given by (6-22), Y1 2 by (6-29), and YC by (6-24) with a's

replaced by c's.

Now consider the case of a normally incident plane wave

io -j
H ° = H e (6-32)Z O

Here the superscript io denotes a wave in media a of infinite extent (no

conductor). The power incident on the aperture (per unit length in the

z direction) is then

= 2w (6-33)

The short-circuit magnetic field is twice the incident field on the con-

ductor, or

H sc = 2H (6-34)
z 0

Hence, the impressed current ii is, by (6-22),

i i = 2H (6-35)

The transmission coefficient of the slot is defined as

P
T trans (6-36)

inc
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Now, substituting from (6-31), (6-33), and (6-35) into (6-36), we have

4 Re(Yc )
T = 2 (6-37)

WflIY 1 2 1

If the plane wave is incident at some angle inc in the x-y plane measured

inn

The transmission coefficient (6-37) depends on screen thickness d

only through the parameter Y1 2 " In particular, it will be maximum when

IYI121 is minimum. Consider the case of region b lossless, and denote the

aperture admittances by

Ya = Ga + jBa  and YC = G' + jBc  (6-38)

We can now write the real and imaginary parts of YI2 as given by (6-29)

as

Re(Y12 ) =-(Ga + GC )cos kbd + (GaBc + GCBa)sin kbd (6-30)

Im(Y1 2) =-(B a + BC)cos kd - (Yo + GaGeY - B )sin kbd (6-40)
0

For narrow slots, we see from (6-24) that Ba >> Ga and Bc  > Gc. Hence,

the coefficients of the trigonometric terms in (6-40) are much larger

than those in (6-39), and we can minimize IYI21 by setting Im(Y12) = 0.

As w - 0, we retain only the dominant Y term in the coefficient of
0

sin kbd in (6-40). Then Im(Yl2) = 0 when

B a + Bctan kbd - y ) (6-41)
b Y

0

which is the condition for "slot resonance." Since B a + Bc

a first approximation to resonance is kbd n l, ori.



86

d n 2 n = 1,2,3,... (6-42)
res 2 bt

Here the subscript "res" denotes "at resonance." Actually, the right-

hand side of (6-41) is a small negative number, hence resonance occurs

when d is slightly less than an integer number of half wavelengths in

region b. Assuming that tan kbd varies linearly in the vicinity of

each zero, we have

d (n + bB (6-43)
res TY 2

0

where n = 1,2,3..... This is a better approximation to the resonant

thickness than is (6-42).

We next wish to obtain the transmission coefficient at resonance.

Now cos kbd z (-1)n and sin kbd is small, hence from (6-39) we have

Re(Y (-1)n (Ga + Gc) (6-44)

At resonance, IY1 2 1 = lRe(Y 1 2 )1 and Re(Yc) = T/n c Act and (6-37) reduces

to

T -- -- (6-45)
res w 0 a c 2(6

WTIa CX (G +Gc)

If we introduce the parameter

qa a
V = a c *(6-46)

Sc c Ca

and substitute for Ga and Gc as obtained from (6-24), then (6-45) can be

written as
4X

T __a (6-47)
res w w ( + 2

If medium a and medium c are the same, I and (6-47) reduces to

I.
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res 1 T a (6-48)

The quantity Tw is the transmission width, or apparent width, of the slot.

The transmission width times the incident power density equals the power

transmitted by a unit length of the slot. Hence, when medium a and medium

c are the same, at resonance the transmission width of a narrow slot is I/R

wavelengths, regardless of its actual width. When medium a and medium c are

different, the transmission width of a narrow slow at resonance can be ob-

tained from (6-47), where v is given by (6-46). Note also that (6-47) and

(6-48) are independent of the medium in region b, that is, the peak values

of T are independent of the medium in the slot. However, the positions

and widths of the peaks are a function of medium b, as is evident from

(6-43) with Yo = l/w b"

6-4 NUMERICAL RESULTS

Once the transfer admittance Y12 is found for a given narrow slot,

we can then readily compute the field transmitted into the half-space

region c. It is thus desirable to compare the results for Y12 obtained

from the 6quivalent circuit formula (6-29) with results for Y12 obtained

from the higher order moment solution of (4]. In the latter, six pulse

expansion functions were used on each aperture face A and A2 for all slot

widths considered. These results are indicated at various points on the

curves in Figs. 6-4 to 6-8 by markers (circles, triangles, pluses, and

crosses). The solid lines represent results obtained directly from the

equivalent circuit model and were computed a: intervals of 0.01 wave-

lengths in region b.For narrow slots, the parameters Y1 2 and T, computed

from the approximate solution, are periodic functions of d (screen thickness).
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They are only plotted for 0 < d/Xb < 2, where Xb is the wavelength in

the slot region b. The permeability of all regions is that of free

space and the permittivity of the different regions is specified for

the different cases.

The real and imaginary parts of Y 2/Yo, where Yo = i/wnb is the

characteristic admittance of the parallel-plate transmission line, are

shown in Fig. 6-4 for slot widths of 0.01X to 0.2X , where X is the

wavelength of free space. Equation (6-28) was used for the higher order

moment solution in which the voltage V2 becomes an integral over the

magnetic current M . The two results are in excellent agreement as w

becomes small. Also, as expected from (6-29) and (6-24), Y12 becomes

purely imaginary as w - 0. These computations indicate that the equi-

valent circuit gives highly accurate results for w < 0.lX, and good

results for 0.1X o < w < 0.2X, . For w > 0.2X o , the results obtained from

the equivalent circuit become increasingly inaccurate. This is to be

expected, since the half space is then no longer adequately repre-

sented by a lumped admittance.

The transmission coefficients for the same slots are shown in

Fig. 6-5, where the equivalent circuit results were obtained from (6-37).

For the higher order moment solution, P was obtained by the usualtrans

multi-port network formula [4]. As w - 0, T becomes a maximum at so-

called resonant thicknesses, which approach multiples of \b/2, as pre-

dicted by (6-42). The peak value of T for w = 0.01X in Fig. 6-5 is
0

T = 30.5 occurring at d/Ab = 0.47, 0.97, 1.47..... This is in agree-

ment with the prediction that the transmission width Tw *X /7T at values of d
0

slightly less than integral multiples of b/2 as w 0.

I ,l lll n . . . . . .. . . . .. . .. .. b
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S.8N .41

-1.6-

-2.0
0 0.5 1.0 1.5 2.0

d/X b
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1.6

1.2
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d/ Xb

Fig. 6-4. Plots of Re(Y 12 /Yo) and Im(Y 1 2/Y ) vs. d/'b for c = b c
= c and width w = O.010 (circles), w = 0.05X (triangles),

w = 0.1X 0 (pluses), and w = 0.2X0 (crosses).
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Fig. 6-5. Plots of transmission coefficient T vs. d/Xb for cases of

Fig. 6-4. Width w = 0.OX (circles), w = 0.05X (triangles),

w = 0.I (pluses), and w = 0.2X (crosses).
0 0

When the slot is loaded with different dielectrics, the

imaginary part of Y12 is most affected. This is shown in Fig. 6-6 for a

slot of width w = 0.io for cb = Eo 5co, and lOo, where co is the

permittivity of free space. As the material filling the slot becomes more

dense, the transmission resonances become narrower and occur closer to

multiples of 1b/2. This is shown in Fig. 6-7 for the slot of Fig. 6-6,

the result being in agreement with (6-43). Note that the heights of the

peaks, however, are the same.
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4.0 I I

3.0-

2.0-

>p 1.0-

0 0.8 1.0 1.5 2.0

d/Xb

4.0- I I I

3.0-
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d /Xb

Fig. 6-6. Plots of Re(Y 1 2 /Y0 and Im(Y 12 /Y 0 vs. d/X b for w =O.lX 0

C a - cc cot with various dielectrics filling the slot.
Cases shown are eb-E0(circles), E b =SE: (triangles),

and e b I OA (ploses).
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4,5-

4.0-

3.5

3.0--

T 2.5

2.0

1.5

1.0

.5

0 0.5 1.0 .5 2.0

d/Xb

Fig. 6-7. Plots of transmission coefficient T vs. d/X for the
b

case- of Fig. 6-6. The dielectrics filling the slot

are Eb = E (circles), 6 = (triangles), and
b  0 b 0

Lb = lOc (pluses).

The effects of lossy material filling the slot are shown in

Fig. 6-8. Here the slot width is 0.05X . The expected decay in the0

transmission coefficient peaks is seen to occur with increasing screen

thickness d. Circles represent the lossless case Lb = cop triangles

represent a dielectric Eb = (l-jO.01)Lo, that is, with Q factor = 100,

and pluses represent a dielectric Eb = (l-JO.l)0 , that is, with Q factor

= 10. Note that loss does not affect the position of the resonances.

If the conductor has large but finite conductivity, the effect of

theconductor loss is similar to that of dielectric loss. For small
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7.0

5.0-

4.0--
T

3.0

2.0

1.0-

0 0.5 1.0 1.5 2.0

d/Xb

Fig. 6-8. Plots of transmission coefficient T vs. d/ b for = £ =
b a C a

w = 0.05X o , for lossy dielectric in the slot. Cases shown are

Lb = £o (circles), Lb = (l-jO.01)o (triangles), and

Lb = (l-JO.l) (pluses).

losses, either conductor or dielectric, the principal effect is to change

the propagation constant of the parallel-plate transmission line mode from

purely imaginary to complex with a - "' ,:al part [11]. Equating the

attenuation constant for a parallel-plat, iveguide with perfectly con-

ducting walls and lossy dielectric (c = c' - je" and quality factor

Q - L'/L") to one with perfect dielectric and lossy conducting walls

(surface resistance R = Vop/2acond), we obtain

l fbw

2R (6-49)
s
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Now the lossy conductor case behaves similarly to the lossy dielectric

case with Q factor given by (6-49). Note that Q is proportional to w,

meaning that for very narrow slots the losses due to conducting walls

become an important factor limiting the field penetration through slots

in conductors of resonant thickness.

6-5 CONCLUSION

The validity of an equivalent circuit model for a narrow TE excited

slot in a thick conducting screen has been investigated. The equivalent

circuit formulas for transfer admittance and transmission coefficient give

accurate results when compared to a higher order moment solution. When

the material filling the slot is dense enough to allow more than one propa-

gating mode, the equivalent circuit picture of Fig. 6-3 becomes more com-

plicated. One must then consider a sequence of transmission lines con-

necting regions a and c in which the higher order modes couple to one

another.

An interesting result of this investigation is that Tw, the trans-

mission width of the slot, for a narrow slot at resonance, is independent

of actual slot width. This phenomenon is analogous to the phenomenon of

scattering by resonant scatters, or reception by resonant antennas. For

example, a short dipole resonated by an inductor has a scattering

cross section of 9/47 square wavelengths regardless of the actual size of

the dipole [121. A short dipole resonated by an inductor and used as a

receiving antenna has an effective aperture of 3/8w square wavelengths

regardless of the actual size of the dipole [13].
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Chapter VII

RESONANT BEHAVIOR OF A SMALL APERTURE

BACKED BY A CONDUCTING BODY

7-1 INTRODUCTION

The coupling of electromagnetic energy to wires or other conducting

objects through an aperture in a conducting wall is an important problem

in the theory of electromagnetic compatibility and interference. As an

approximation, some investigators have first solved the problem for the

tangential electric field in the aperture, and then taken this as a

secondary source for the field coupled to a wire [i]. This approach

neglects the effect of the wire on the electric field in the aperture,

which can be appreciable. Under certain conditions of resonance, the

power transmitted through an aperture can be orders of magnitude larger

when an object is near it than when no object is present.

Our approach is to first obtain the functional equations for the

problem using the equivalence principle (See. 3-5 of [2]), and then to

reduce these equations to matrix form via the method of moments 13]. The

various matrices are interpreted in terms of generalized network parame-

ters, such as voltages, currents, admittances, and impedances [3]. The

aperture admittance matrices of electrically small apertures are obtained

and discussed. An example of coupling through a capacitively loaded

aperture is given to illustrate the phenomenon of aperture resonance.

Perhaps the first accurate treatment of coupling through'an aper-

ture to a wire was given by Butler and Umashankar [4]. Later work by

Butler considered the electrically small aperture and coupling to
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objects other than wires [5]. He used Bethe-hole theory for the small

aperture but did not include a radiation term. He also did not look at

the resonance effects which we emphasize. Other work which treats

coupling to wires is that of Kajfez [6], Kajfez and Wilton [7], and Lee

and Yang [8]. These last three references deal with determining an

equivalent circuit for wires passing near small apertures. Again Bethe-

hole theory was used, radiation was not accounted for in the equivalent

circuit, and resonance effects were not considered.

7-2 FORMULATION OF THE PROBLEM

The general problem of coupling to a conducting body through an

aperture in a conducting wall is represented by Fig. 7-1. The wall

J CONDUCTOR

APERTURE
A B CONDUCTING

BODY

REGION b

REGION a

Fig. 7-1. Two-region aperture problem with Impressed sources J-
in region a and conducting object In region h.

"I
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divides space into two regions, called region a and region b. The exci-

tation is represented by impressed sources in region a, and the conduct-

ing body is in region b. The problem is primarily that of finding the

tangential electric field in the aperture and the current on the con-

ducting body, and secondarily that of finding the fields throughout space.

We use the equivalence principle (Section 1-6) to divide the problem

into two parts, as shown in Fig. 7-2. The field in region a remains

unchanged if the aperture is closed by a conductor and the equivalent sur-

face magnetic current

M = n x E (7-1)

is placed over the aperture region, where E is the electric field in the

aperture of the original problem and n is the unit normal pointing out-

ward. The original sources J i, M must be kept in region a. This equiva-

lence is shown in Fig. 7-2a. The field in region b remains unchanged if

the aperture is closed by a conductor and the equivalent surface magnetic

current -M is placed over the aperture region. The current J on the con-

ducting body must be .kept in region b. This equivalence is shown in

Fig. 7-2b.

The fact that M is used in Fig. 7-2a and -M is used in Fig. 7-2b

ensures tiat the tangential electric field is equal on each side of the

aperture region. We have two more boundary conditions to enforce:

(a) the tangential magnetic field must be equal on each side of the aper-

ture region, and (b) the tangential electric field must vanish on the

surface of the conducting body. These two conditions give us two equa-

tions from which to calculate the unknown quantities M and .J.
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t M' CONDUCTORM (APERTURE SHORTED)

M
n

REGIONa

(a) EQUIVALENCE FOR REGION a

CONDUCTOR
(APERTURE SHORTED)

-M

REGION b

(b) EQUIVALENCE FOR REGION b

Fig. 7-2. Original problem divided into two equivalent parts.
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To express these boundary conditions in equation form, we intro-

duce the following notation: Let the electric and magnetic fields in

region a be denoted

Ea = Ea(M) + Ei (7-2)

H a Ha(M) + Hi (7-3)

a a i iwhere E (M), Ha(M) are the fields from M in Fig. 7-2a, and E , H are

the fields from _i, Mi in Fig. 7-2a. Note that all fields are computed

with the aperture shorted. Similarly, let the electric and magnetic

fields in region b be denoted

Eb = E (-M) + Eb (J) (7-4)

Hb =H + (- b (J) (7-5)

where E (-M), H (-M) are the fields from -M in Fig. 7-2b, and E b(j),

H b(J) are the fields from J in Fig. 7-2b. Again, all fields are

computed with the aperture shorted.

To satisfy the boundary condition that the tangential component

of H must be continuous across the aperture, we equate tangential com-

ponents of (7-3) and (7-5), obtaining

--(M) - -H M) +H - + =H over A (7-6)

where A denotes the aperture region. The subscripts t denote the tan-

gential component over A, and we have used the linearity of the operator

to replace Hb (-M) by -Hb (M). To satisfy the boundary condition that the

tangential compotent of E must vanish on the surface of the conducting

body, -it a tangential component of (7-4) equal to zero, obtaining
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b b
E (M) - (J) = 0 over B (7-7)
-- t-

where B denotes the conducting body surface. The subscripts t denote

the tangential component over B, and we have used the linearity of the

operator to replace E b(-M) by -E b(M). Equations (7-6) and (7-7) are
-t - .- t

vector equations for determining the unknowns M and J which exist over

the surfaces A and B.

We next reduce (7-6) and (7-7) to matrix equations using the method

of moments [3]. For this, we define a set of expansion functions

{M, n = 1,2,..., N I and express the magnetic current over A as
n A

M = V M (7-8)
nsinfncin-Jn 12.. N-- nd exrs h leti urn

where V are coefficients to be determined. We define a set of expan-

sion functions {J n = 1,2,-., NB }) and express the electric current
--nB

over B as

J I J (7-9)
n

where I are coefficients to be determined. We substitute (7-8) andn

(7-9) into (7-6) and (7-7), use the linearity of the operators, and

obtain

- VH aM) V H bH(M + I Hb (J H H (7-10)
n n n

over A, and
b ~- b

V E (M ) - I E (J ) = 0 (7-11)n-t-n n-t -n
n n

over B. For A, we define a set of testing functions Mn' r=,2.... N,,

and a symmetric product

<F, G A =Af F * Gds (7-12'

A
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We take the symmetric product of (7-10) with each AM , and use the linearity

of the symmetric product to obtain

- Vn < H ( a > Q1 > H < bm (Mn)>n m t -n A nm tn A

n n

(7-13)

n AI+YI <9 , H (J)> = <M, H >
n m t n Am t A

n

m = 1,2,..., NA. For B, we define a set of testing functionE

{j, m = 1,2,..., N B } and a symmetric product

<F, G>B = i F - G ds (7-14)

B

We take the symmetric product of (7-11) with each J, and use the linearity

of the symmetric product to obtain

Vn <Jml Eb (Mn)>B - Z n <m' Eb PJ)> 0 (7-15)
n n

m = 1,2,..., NB. Equations (7-13) and (7-15) are now a set of algebraic

equations for determining the unknown coefficients V and I nn n

The above equations can be put into matrix notation as follows:

Define an admittance matrix for region a as

ya] = [<_M , H (M )> AN xN (7-16)
t n A A xNA

and an admittance matrix for region b as

[Y b [<-M , H b(M )> (7-17)
m t n AN A xN (7-17

Note that these are exactly the same as defined in Chapter 11 for the
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problem with the wire absent. Define coupling matrices

(TI = [<A' H bn)>A] N XN B  (7-18)
m t n A B x

and

[T] = E (M )>I (7-19)
m t n B N B xN (719

Define an impedance matrix for the wire object as

[ZI = [<-3, Eb J )>] NB (7-20)

Note that this is calculated in the presence of a complete conducting

boundary, that is, with the aperture shorted. Define a source vector

iI M H > I (7-21)m t ANAXl (-1

and coefficient vectors

V = [VJN x 1 (7-22)
A

I = (In]N B x 1 (7-23)

Now the matrix equations equivalent to (7-13) and (7-15) are

[ya +Y bIV + [TIt = '1 (7-24)

IT V + [zIi = ' (7-25)

The coefficient vectors V and I are obtained from the matrix solution

to (7-24) and (7-25). If we want only 1, we can eliminate V from (7-25)

by using (7-24). Similarly, if we want only V, we can eliminate i from

(7-24) by using (7-25).
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For emphasis, we restate that [Y I is calculated for the aper-

tiire as if the conducting body were not present, by methods outlined in

Chapter I and carried out in detail for a rectangular aperture in a

plane conducting wall In Chapter Ill. The matrix [Z] is calculated for

the conducting body as if the aperture were not present, that is, with

the aperture short circuited. Conceptually, the only new matrices re-

quired are the interaction matrices, [T) and IT). If a Galerkin solu-

tion is used, that is, if TM U = {M- and {J = nJ , it then follows-21 -l -' --Y

from reciprocity (See. 3-8 of [2]) that [T] = - [T], where the tilde

denotes transpose.

7-3 APERTURE ADMITTANCE MATRIX FOR SMALL HOLES

An aperture admittance matrix for electrically small apertures

can be obtained from the quasi-static solution to the integral equation.

The complete solution depends on both regions a and b, but the components

of the aperture admittance matrix depend only on one region. The usual

procedure is to solve for the aperture admittance of a canonical problem,

and then use this solution for other problems which differ only slightly

from the canonical problem. The basic canonical problem for aperture

admittance is that of an aperture in an infinite plane conducting screen,

excited by an incident plane wave. The electrostatic and magnetostatic

treatment of this problem is known as Bethe-hole theory [101, [11].

The field produced by an aperture is defined to be the dif-

ference between that produced by the original sources in the presence

of a shorted aperture and that produced when the aperture is present.

I'

Ij
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Except in the immediate vicinity of the aperture, the field of an elec-

trically small aperture in a conducting screen is that of a magnetic

dipole Pm tangential to the screen plus that of an electric dipole Pe

normal to the screen, both radiating with the aperture shorted. Let

the two half space regions on each side of the screen be denoted region

Sca Scaa and region b, with sources possibly in both regions. Let Hs, E
scb SCb

and , E be the fields produced by these sources when the aperture

is shorted. Then the difference field in region b is given by that from

the dipoles

(Hsca- H sc b  (7-26)

- sca scb
i2 ea e " (E _ ) (7-27)

where am and a are the tensor magnetic and electric polarizabilities

cM = Cmlt t + am2 ! 2t 2  (7-28)

= a n n (7-29)e e --

Here t and t are unit vectors tangential to the screen chosen to

diagonalize am, and n is the unit normal to the screen pointing into

region b. Analytical solutions for rX and at exist for circular aper-

tures [10] and elliptical apertures [12]. Methods for computing M audm

ae for other shapes have been developed by De Meulenaere and Van Blade] [13],

and of measuring them by Cohn [14], [15]. For an aperture with an axis of

symmetry, tI is in the direction of this axis and t is normal to It.
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The magnetic dipole moment p. is that of a magnetic pole dipole

and the electric dipole moment Pe is that of an electric charge dipole.

For our purposes it is more convenient to deal with current elements,

magnetic denoted by KZ and electric denoted by I9 . These are related

to pm and pe by

= jwii p (7-30)

iw (7-31)

sca sca i
Finally, let sources exist only in region a, and denote E ., H by

H i, as was done in section 7-2 or in Chapter II. Then (7-30) and (7-31),

with substitutions from (7-26) and (7-27), become

Kk = - j M * Hi(0) (7-32)

Ik = jWE * e E (0) (7-33)
-e

i~i i i
The notation E (0), H (0) denotes the value of E and H at the center 0

of the aperture. These impressed fields are assumed to be approximately

constant over the aperture region.

We wish to translate the above results into those of aperture

admittance, and to augment them to include the effects of radiation.

Hence, for a small aperture, let ;he magnetic current be expressed by.a

three term expansion

M= VM1 + V2M2 + V3M 3  (7-34)

where MI is the quasi-static current which produces the effect of a

unit magnetic dipole K = 1 in the i direction, M2 is the quasi-static

1-2.
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current which produces the effect of a unit magnetic dipole Kk = 1 in

the t direction, and M is the quasi-static current which produces the

effect of an electric dipole It j in the n direction. (A real mag-

netic current gives rise to an imaginary It [2, p. 135].) We will not

need explicit formulas for Mi' M2' and M3, but they can be obtained from

the Bethe-hole quasi-static solution.

The dipoles in (7-32) and (7-33) radiate in region b. In Fig. 7-2b,

-M radiates in region b. The dipole effects of -M will be equal to the

results (7-32) and (7-33) of Bethe-hole theory if the V's in (7-34) are

given by

V1 = JWVWCtH (0)

i

V2  j wot 2 H2 (0) (7-35)

i
V = _ wcxeE (0)3 e 3

Here, the subscripts 1, 2, and 3 denote the ti, L2' and n directions,

respectively. For our canonical problem involving the infinite plane

conducting screen, - in (7-24) so that the method of moments solution

for V reduces to

S[yi + y (7-36)

For testing functions we use M M, n n 1,2,3 (Galerkin's method). We

then find

I'= Hi(O)

H2(0) (7-37)

-JE3(0)

I&
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Now for the admittance solution (7-36) to give the same result 
as Bethe-

hole theory, we must have

[Ya +b 1 0 0 (7-38)

0 0

0 0 -

The solution (7-36) gives coefficients V which, according to (7-34), given

the negative of the dipoles specified by (7-32) and (7-33).

The aperture admittance matrix obtained from Bethe-hole theory neg-

lects radiation. In other words, it evaluates only the first term of a

frequency expansion for [Y + Yb]. When there is an object near the aper-

ture, as in our original problem, the first (susceptive) term in ya + Yb]

can be cancelled by the interaction between the object and the aperture,

resulting in the incorrect prediction of infinite coefficients V n , or infi-

nite power transmitted through the aperture. This defect in the Bethe-

hole theory can be corrected by evaluating the second (conductive) term of

a frequency expansion for [Ya + Y b. Fortunately, this additional term is

easily obtained from the radiation field of the dipoles.
a b

Note that, for M real, we have Re(Y a + Y b) equal to 4 times
n1 nn nn

the power radiated by M in free space. The factor of 4 arises because--n

Ha (M ) in (7-16) is twice the magnetic field due to M radiating in free

space and because [Ya + Yb] = 2[ya . The field distant from M is assumed-n

to be a dipole field, hence we can use the results for a dipole. Using

duality (Sec. 3-2 of [2]) and the formula for the power radiated by an
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electric dipole (Eq. 2-116 of [2]), we have for a magnetic dipole

P =f T3, (7-39)

where ni h7e is the intrinsic impedance of space and X is the wave-

length. Since HI and !2 each produce the effect of K = 1, we have

RelYa + Yb I Re[Ya + yb] = 2 4P ir 2 (7-40)31jX

By similar reasoning, for the electric dipole I = j radiating on the

surface of an infinite conducting plane we obtain a term

Relya + Yb fI 87_I (7-41)

These terms must be added to the imaginary terms in (7-38) to give the

aperture admittances corrected to account for radiation. The off-diagonal

elements in (7-38) remain zero because there is no ci:oss-power between any

pair of the quasi-static currents Mi M 2 , and 13.

For a half-space region alone the matrix elements are one-half those

evaluated above, or

hs = hs 0 0 (7-42)

0 hs 0
22

0 0 hs
1. 0 33J

where

hs 1 + 4Y I ml 3n2

hs 1 + 4 7-43)
Y22 2jWljctM2  3nX 2

hs + - 4 2f
33 .Jw-ae 3X2.
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Of course, equations (7-43) are strictly valid only for a half space

region, but they are often a good approximation for other regions.

7-4 TRANSMITTED POWER

The complex power through the aperture is basically given by

PA = JJ E H* n ds

A
(7-44)JJ M H* ds

A

where M is the equivalent magnetic current defined by (7-1), and H* is

the conjugate of the magnetic field in the aperture. Setting H !Hb

and using (7-5), we have

PA =ff M " [-Hb(M) + Hb(J)]* ds

A
(7-45)

f M J' H Hb*(M)ds + ff M * 11b*(J) ds
A A

Substituting for M from (7-8) and for J from (7-9), we reduce this to

- V V* MJ Hm Hb(M) dsm n A

(7-46)

+ VmI *  M H "b*(J) ds
m n A

If a Galerkin solution (M M and J = J ) is used, and if the expansion
-n -n -- -n
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functions are real, then the negatives of the first integrals in (7-46)

are Yb* as defined by (7-17), and the second integrals in (7-46) are T*
mn mn

as defined by (7-18). Hence,

PA VV*Y b* + V I*T* (7-47)A m n mn m n mn
m n m n

In matrix form this becomes

PA = V[Ybl,*V V[T]*I* (7-48)

A

where V is defined by (7-22), 1 by (7-23), and the tilde denotes transpose.

The last term in (7-48) can be put into another form by using (7-25)

to express f in terms of X. Since [f] - - IT], we have

-41-V 1 (7-49)

Substituting this into (7-48), and combining the two matrix products, we

have

P ! [yb + TZ- 1t, V* (7-50)

This suggests that we can define the effective aperture admittance into

region b to be

[Yfb 1 [b + TZ-
1  (7-51)

eff1 T

Then (7-50) becomes the usual formula for power transmitted into an N-port

network. Note that the effective aperture admittance is that for region b

with the conducting body present. In this case we are viewing the con-

ducting body as part of the definition of region b, that is, part of the

environment into which the aperture radiates,

I.
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We can see more clearly what can happen if the magnetic current

M in the aperture and the electric current J on the body are expressed

in terms of a single expansion function each. These two quantities

are then given by

M= VM and J IJ (7-52)

where only the complex amplitudes V and I are unknown. The matrix

equations (7-24) and (7-25) are now reduced to the scalar equations

YV + TI = Hsca (7-53)

-TV + ZI = 0 (7-54)

where Y = Ya + Yb, T, and Z are given by (7-16, 17, 18, and 20) with

the subscripts m and n each being 1 only. Expressing I in terms of

V from (7-54), and substituting into (7-53), we have /

2
(Y + T )v = Hsca (7-55)

z t

For electrically small apertures, normally jIm(Y)j >> Re(Y). We define

aperture-body resonance to be the case for which

Im(T 2/Z) = - Im(Y) (7-56)

T is real positive if the body and aperture are electrically small

and close to each other. For this case, at resonance (7-55) reduces to

(G + T R Hsca (7-57)

where the subscript r on V denotes "at aperture-body resonance,

r

G - Re(Y), and R = Re(Z).
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In the next section we show by example that the power transmitted

by an electrically small aperture backed by a conducting body can be much

larger when the body is present than when the body is absent. As a limit-

ing case, the second term in parenthesis in (7-55) may be small compared

to the first term. When the aperture is far from resonance, we then have

Hsca
V Z t-( (7-58)

When aperture-body resonance occurs, we have

Hsca

Vr Re(Y) (759)

We define the aperture Q as

Q [Im(Y)t (7-60)
Re(Y)

Then, since M = VMI, we see that E in the aperture can be increased at

most by the factor Q at aperture-body resonance. The power transmitted

by the aperture, (7-50), depends on IV12, and hence may be increased at

2most by Q . As a word of caution, note that Q depends on M as well as on

the aperture size and shape.

7-5 AN EXAMPLE

As an example, consider a small rectangular aperture in a plane

conducting screen with a capacitor placed across its midpoint, as shown

in Fig. 7-3a. Take the excitation to be a plane wave normally incident

on the screen with E perpendicular to the longer axis of the slot. By

Babinet's principle (Sec. 7-12 of [2]), this problem is dual to that of

JI
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CONDUCTING
SCREEN

(bi

Fig. 7-3. (a) A capacitively loaded aperture and (b) the
complementary inductively loaded scatterer.

electromagnetic scattering from a conducting rectangular dipole, with

an inductor in series at its midpoint, as shown in Fig. 7-3b. It is

known that, for a loss-free resonated dipole, the back scattering cross

section is
9x2 (7-61)
41T

regardless of the size or shape of the dipole [16]. The result (7-61)

can, however, be greatly decreased by conductor losses for small dipoles.

We now show that a similar result holds for the transmission cross section

of a small resonated aperture.
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For a plane wave normally incident on an aperture, we define the

transmission coefficient T of the aperture to be the ratio of the power

transmitted through the aperture to the power incident on it, that is,

Re(P A)

T= 2 (7-62)IHo0 2 nA

Here A is the area of the aperture and H = H sca/2 is the incident part
0 t

of Hi. For the problem of Fig. 7-3, the current on the "conducting body,"

that is, the capacitor, is in phase quadrature with the voltage across it.

Therefore the real part of the second term of (7-50) must be zero and,

for scalar V and Yb, it reduces to

2b
Re(PA) = Iv 2 Gb (7-63)

The conductance Gb is Re(Y b ) which, from (7-43), is seen to be

Gb . 4(7-64)
3rn 2

At resonance, V - V is given by (7-57) with the second term zero, orr

Hsca H sca

vf t ft (7-65)
r G 2Gb

The second equality in (7-65) is due to the fact that G is the conductance

seen by the aperture opening into two half spaces in parallel, while Gb is

the conductance seen by the aperture looking into the single half space

region b. Using (7-63) and (7-65) in (7-62), we have

.s~ca,2

T =  (7-66)
IH0

2 nA 4 Gb
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Finally, using (7-64) and the fact that Hsca 2H , we obtaint 0'

1i 3X2

T= AGb i 4A (7-67)

Hence, the transmission coefficient of an electrically small aperture

resonated by a capacitor is independent of the shape of the aperture.

The transmission area of the aperture is defined as the area for which

the incident wave contains the same power as transmitted by the aperture,

that is

T A = .- (7-68)
47T

Hence, the transmission area of a small aperture resonated by a capacitor

is 3A 2/47T independent of the size and shape of the aperture. Of course,

conductor losses may greatly decrease (7-68) for very small apertures.

7-6 DISCUSSION

This chapter illustrates how a conducting object situated near a

small aperture in a conducting screen can resonate the aperture, thereby

increasing the power transmitted by that aperture over what it would

transmit with no object present. ThE magnitude of the increase can be of

2
the order of Q , where Q is the quality factor of the aperture current

being resonated. With no conductor losses Q becomes very large for

electrically small holes. For example, the magnetic dipole of a circular

aperture of radius R has a Q of 114 when R - X/20 and a Q of 14,200 when

R = X/100. These values of Q were obtained from (7-60), (7-43), and,

3
as given in [5], oml = (4/3)R . When losses are included, we can expect

Q to be limited to the order of a few hundred at radio frequencies.
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The susceptance of the magnetic dipole mode for a small aperture

is inductivr., and requires the coupling of a capacitive susceptance from

the backing object for resonance. In the example chosen, we obtained

this required susceptance by capacitively loading the slot. We used a

lumped load, but longer wires can produce this capacitive susceptance

without lumped loads. For example, a straight wire of length Z slightly

less than a half wavelength (a wire dipole) produces a capacitive sus-

ceptance. If region b is a cavity, it will reflect a capacitive sus-

ceptance at some frequencies and an inductive susceptance at other fre-

quencies. The reason we chose a lumped capacitive load was to show that

aperture-conductor resonance is possible even if all dimensions are

electrically small.

Another point that we wish to emphasize is that Bethe-hole theory

should assume that the form of the aperture field remains almost the lame

as in the canonical problem of a small aperture in a plane 9 Leen, but

not its amplitude and phase. If this is not recognized, order of magni-

tude errors may result when the aperture interacts with other objects.

Also, the concept of small-aperture polarizability should be generalized

to that of aperture admittance by including a radiation conductance term.

If this is not done, infinities in the aperture power transmitted may occur.

The result that the transmission cross section of a small aperture

resonated by a capacitive load is independent of the size and shape of the

aperture is not unexpected, since similar results have been obtained in

other transmission problems. For example, the transmission width of a

narrow infinitely long slot in a thick conductor at resonance is X/TT,
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regardless of the actual slot width, as shown in Chapter VI. Of course,

this is for an ideal loss-free problem. Conductor losses can significantly

decrease the aperture transmission cross section for apertures in actual

conductors.

The simplest way to resonate a small aperture is to connect a

capacitor directly across the center of the aperture, as was done in the

example. This is an analogue to the problem of connecting an inductor

in series with a short dipole scatterer. When the aperture is in a shield,

we obviously do not want to resonate the aperture. However, when a broad

spectrum of frequencies is present, such as in an electromagnetic impulse,

an aperture-body system will possibly resonate at some frequencies of

interest. This possibility should be taken into account in the engineering

analysis of such a system.

7-7 REFERENCES FOR CHAPTER VII

[1] J-L Lin, W. L. Curtis, and M. C. Vincent, "Electromagnetic Coupling
to a Cable through Apertures," IEEE Trans., vol. AP-24, pp. 198-203,
March 1976.

[2] R. F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill
Book Co., New York, 1961.

[31 R. F. Harrington, Field Computation by Moment Methods, The Macmillan
Co., New York, 1968.

[4] C. M. Butler and K. R. Umashankar, "Electromagnetic Excitation of a
Wire through an Aperture-Perforated Conducting Screen," IEEE Trans.,
vol. AP-24, pp. 456-462, July 1976.

[51 C. M. Butler, "Investigation of a Scatterer Coupled to an Aperture
in a Conducting Screen," lEE Proc., vol. 127, pt. H, pp. 161-169,
June 1980.

I,



119

[6] D. Kajfez, "Excitation of a Terminated TEM Transmission Line through
a Small Aperture," Report AFWL-TR-74-195, Contract F29601-74-C-0010
between the Air Force Weapons Laboratory, Kirtland AFB, NM 87117,
and the University of Mississippi, Department of Electrical Engineering,
University, MS 38677, August 1975.

[7] D. Kajfez and D. R. Wilton, "Small Aperture on a Multiconductor
Transmission Line Filled with Inhomogeneous Dielectrics," Interaction
Note 347 (Editor, C. Baum, AFWL, Kirtland AFB, NM 87117), University
of Mississippi, University, MS 38677, November 1977.

18] K.S.H. Lee and F. C. Yang, "A Wire Passing by a circular Aperture in
an Infinite Ground Plane," Interaction Note 317 (Editor, C. Baum,
AFWL, Kirtland AFB, NM 87117), Dikewood Corporation, Los Angeles, CA

90024, February 1977.

[9] R. F. Harrington and J. R. Mautz, "Electromagnetic Transmission through
an Aperture in a Conducting Plane," AEU (Germany), vol. 31, pp. 81-87,
February 1977.

[101 H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev.,
vol. 66, pp. 163-182, October 1944.

[11] C. J. Bouwkamp, "On Bethe's Theory of Diffraction by Small Holes,"
Philips Res. Repts., vol. 5, pp. 321-332, October 1950.

[12] R. E. Collin, Field Theory of Guided Waves, McGraw-Hill Book Co.,
New York, pp. 294-298, 1960.

[13] F. De Meulenaere and J. Van Bladel, "Polarizability of Some Small
Apertures," IEEE Trans., vol. AP-25, No. 2, pp. 198-205, March 1977.

[14] S. B. Cohn, "Determination of Aperture Parameters by Electrolytic-Tank
Measurements," Proc. I.R.E., vol. 39, pp. 1416-1421, November 1951.

[15] S. B. Cohn, "The Electric Polarizability of Apertures of Arbitrary
Shape," Proc. i.R.E., vol. 40, pp. 1069-1071, September 1952.

[16] R. F. Harrington, "Small Resonant Scatterers and their Use for
Field Measurements," IRE Trans., vol. MTT-10, pp. 165-174, May 1962.



MISSION
Of

Rome Air Development Center
RAVC ptn6 and execate A ezeomch, deveeopnent, teI& and
'set.eted acqui 6Laon p'Logtam6 i'n Suppokt o6 Command, Cont'toe*Communicationa and Intettience (C31) activitie6. Techicat
and eng-ineeting 4uppott within a'tea oA technicat competence
Zti p~ovided to ESP PRtoqkam OS6ca (POts) and othet ESV
e.tement6. The pxncZpaC technicat rn-5sion oAea.6 akecommunation4, etect~omagnetic guiance and cotot, sut~-
veittance o6 gkound and aeko.6pace obJect6, intet~qence datacozeection and handtinq, in6o'unaton sy~temi technoeogy,
AionozpheAic p'topaqoa.&on, soZ~d .6tate 5cience,6, mictowaxve
phy.Zca and etectunic etabitity, maintanabiLtt and
compatibZitt.




